PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cogging torque and torque ripple analysis of permanent magnet flux-switching machine having two stators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analysis of cogging torque, torque ripple and total harmonic distortion of a permanent magnet (PM) flux-switching machine having separate excitation stators is presented in this study. Further, the effect of unbalanced magnetic force (UMF) on the rotor of this machine is also investigated. A comparison of the analysed machine having different rotor pole configurations is also given. The analysis shows that the largest cogging torque, torque ripple as well as total harmonic distortion (THD) are obtained in the four-rotor-pole machine while the least of THD and torque ripple effects is seen in the thirteen-rotor-pole machine. Furthermore, the evaluation of the radial magnetic force of the machines having an odd number of rotor poles shows that the investigated machine having a five-rotor-pole number exhibits the highest value of UMF, while the smallest amount of UMF is obtained in an eleven-rotor-pole machine. Similarly, it is observed that the machines having an even number of rotor poles exhibit a negligible amount of UMF compared to the ones of the odd number of rotor poles.
Rocznik
Strony
115--133
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wz.
Twórcy
  • Department of Electrical and Electronics Engineering Michael Okpara University of Agriculture PMB 7267 Umudike, Nigeria
  • Department of Electrical and Electronics Engineering Michael Okpara University of Agriculture PMB 7267 Umudike, Nigeria
  • Department of Electrical Engineering, University of Zimbabwe, Harare, Zimbabwe
Bibliografia
  • [1] Bianchini C., Immovilli F., Lorenzani E., Bellini A., Davoli M., Review of design solutions for internal permanent magnet machines cogging torque reduction, IEEE Transactions on Magnetics, vol. 48, no. 10, pp. 2685–2693 (2012).
  • [2] Lateb R., Takorabet N., Tabar F.M., Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors, IEEE Transactions on Magnetics, vol. 42, no. 3, pp. 442–445 (2006).
  • [3] Fei W., Luk P.C.K., Shen J., Torque analysis of permanent magnet flux switching machines with rotor step skewing, IEEE Transactions Magnetics, vol. 48, no. 10, pp. 2664–2673 (2012).
  • [4] Liu T., Huang S., Gao J., Lu K., Cogging torque reduction by slot-opening shift for permanent magnet machines, IEEE Transactions on Magnetics, vol. 49, no. 7, pp. 4028–4031 (2013).
  • [5] Parsa L., Kim T., Reducing torque pulsation of multi-phase interior permanent magnet machines, Proceedings of 41st IEEE Industry Applications Annual Conference, Tampa, FL, USA, pp. 1978–1983 (2006).
  • [6] Ahn H., Jang G., Chang J., Chung S., Kang D., Reduction of the torque ripple and magnetic force of a rotatory two-phase transverse flux machine using herringbone teeth, IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 4066–4069 (2008).
  • [7] Gong Y., Chau K.T., Jiang J.Z., Yu C., LiW., Design of doubly salient permanent magnet motors with minimum torque ripple, IEEE Transactions Magnetics, vol. 45, no. 10, pp. 4704–4707 (2009).
  • [8] Faiz J., Pakdelian S., Finite-element analysis of a switched reluctance motor under static eccentricity fault, IEEE Transactions on Magnetics, vol. 42, no. 8, pp. 2004–2009 (2006).
  • [9] Perers R., Lundin U., Leijon M., Saturation effects on unbalanced magnetic pull in a hydroelectric generator with an eccentric rotor, IEEE Transactions on Magnetics, vol. 43, no. 10, pp. 3884–3890 (2007).
  • [10] Zhang X., Liu X., Chen Z., Investigation of unbalanced magnetic force in magnetic geared machine using analytical methods, IEEE Transactions Magnetics, vol. 52, no. 7, ASN 8104504 (2016).
  • [11] Dorrell D.G., Popescu M., Ionel D.M., Unbalanced magnetic pull due to asymmetry and low-level static rotor eccentricity in fractional-slot brushless permanent magnet motors with surface-magnet and consequent-pole rotors, IEEE Transactions Magnetics, vol. 46, no. 7, pp. 2675–2685 (2010).
  • [12] Chen J.T., Zhu Z.Q., Howe D., A dual-lumped parameter magnetic circuit model accounting for the cross-coupling effect, with particular reference to flux-switching permanent magnet machines, Proceedings of 4th IET Conference on Power Electronics, Machines and Drives, York, UK, pp. 111–115 (2008).
  • [13] Chen J.T., Zhu Z.Q., Iwasaki S., Deodhar R.P., A novel E-core switched flux PM brushless AC machine, IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1273–1282 (2011).
  • [14] Fasolo A., Alberti L., Bianchi N., Performance comparison between switching-flux and IPM mchines with rare-earth and ferrite PMs, IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 3708–3716 (2014).
  • [15] HuaW., Zhang G., Cheng M., Flux-regulation theories and principles of hybrid-excited flux-switching machines, IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5359–5369 (2015).
  • [16] Shuangxia N., Chau K.T., Dong Z., Jiang J.Z., Zheng W., Design and control of a double-stator permanent-magnetmotor drive for electric vehicles, Proceedings of IEEE Industry Applications Annual Meeting, New Orleans, LA, USA, pp. 1293–1300 (2007).
  • [17] Shuangxia N., Chau K.T., Jiang J.Z., A permanent-magnet double-stator integrated starter-generator for hybrid electric vehicles, Proceedings of IEEE Vehicle Power and Propulsion Conference (VPPC), Harbin, China, pp. 1–6 (2008).
  • [18] Linni J., Guoqing X., Chunting C.M., Chau K.T., Chan C.C., Analytical method for magnetic field calculation in a low-speed permanent-magnet harmonic machine, IEEE Transactions on Energy Conversion, vol. 26, no. 3, pp. 862–870 (2011).
  • [19] Liu C., Chau K.T., Zhong J.,Wenlong L., Fuhua L., Quantitative comparison of double-stator permanent magnet vernier machines with and without HTS bulks, IEEE Transactions on Applied Superconductivity, vol. 22, no. 3, ASN 5202405 (2012).
  • [20] Liu C., Chau K.T., Zhang Z., Novel design of double-stator single-rotor magnetic-geared machines, IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 4180–4183 (2012).
  • [21] Awah CC., Zhu Z.Q., Comparative study of high performance double-stator switched flux permanent magnet machines, Proceedings of the 13th IEEE Vehicle Power and Propulsion Conference, Hangzhou, China, pp. 1–6 (2016).
  • [22] Chen J.T., Zhu Z.Q., Iwasaki S., Deodhar R.P., Influence of slot opening on optimal stator and rotor pole combination and electromagnetic performance of switched-flux PM brushless AC machines, IEEE Transactions on Industry Applications, vol. 47, no. 4, pp. 1681–1691 (2011).
  • [23] Chen J.T., Zhu Z.Q., Winding configurations and optimal stator and rotor pole combination of flux switching PM brushless AC machines, IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 293–302 (2010).
  • [24] Evans D.J., Zhu Z.Q., Novel partitioned stator switched flux permanent magnet machines, IEEE Transactions on Magnetics, vol. 51, no. 1, ASN 8100114 (2015).
  • [25] Zhu Z.Q., Thomas A.S., Chen J.T., Jewell G.W., Cogging torque in flux-switching permanent magnet machines, IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4708–4711 (2009).
  • [26] Chandan S., Iqbal H.,Wen O., Cogging torque reduction in flux-switching permanent-magnet machines by rotor shaping, IEEE Transactions on Industry Applications, vol. 51, no. 5, pp. 3609–3619 (2015).
  • [27] Jang S.M., Lee S.H., Cho H.W., Cho S.K., Analysis of unbalanced force for high-speed slotless permanent magnet machine with halbach array, IEEE Transactions on Magnetics, vol. 39, no. 5,pp. 3265–3267 (2003).
  • [28] Chen J.T., Zhu Z.Q., Comparison of all and alternate poles wound flux-switching PM machines having different stator and rotor pole numbers, IEEE Transactions on Industry Applications, vol. 46, no. 4, pp. 1406–1415 (2010).
  • [29] Burakov A., Arkkio A., Comparison of the unbalanced magnetic pull mitigation by the parallel paths in the stator and rotor windings, IEEE Transactions on Magnetics, vol. 43, no. 12, pp. 4083–4088 (2007).
  • [30] Pang Y., Zhu Z.Q., Reduction of unbalanced magnetic force in 2-pole 3-slot permanent magnet machine, Proceedings of 7th IET International Conference on Power Electronics, Machines and Drives, Manchester, UK, pp. 1–6 (2014).
  • [31] Lindner A., Hahn I., Design of an E-core flux-switching permanent magnet machine with large air-gap, Proceedings of IEEE International Electric Machines and Drives Conference, Coeur d’Alene, ID, USA, pp. 1580–1585 (2015).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49044590-a15a-4b39-8664-7eacbebcbf2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.