PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microbial plankton communities in the coastal southeastern Black Sea : biomass, composition and trophic interactions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigated biomass and composition of the pico-, nano- and microplankton communities in a coastal station of the southeastern Black Sea during 2011. We also examined trophic interactions within these communities from size-fractionated dilution experiments in February, June and December. Autotrophic and heterotrophic biomasses showed similar seasonal trends, with a peak in June, but heterotrophs dominated throughout the year. Autotrophic biomass was mainly comprised by nanoflagellates and diatoms in the first half of the year, and by dinoflagellates and Synechococcus spp. in the second half. Heterotrophic biomass was mostly dominated by heterotrophic bacteria, followed by nanoflagellates and microzooplankton. Dilution experiments suggest that nano- and microzooplankton were significant consumers of autotrophs and heterotrophic bacteria. More than 100% of bacterial production was consumed by grazers in all experiments, while 46%, 21% and 30% of daily primary production were consumed in February, June and December, respectively. In February, autotrophs were the main carbon source, but in December, it was heterotrophic bacteria. An intermediate situation was observed in June, with similar carbon flows from autotrophs and heterotrophic bacteria. Size-fraction dilution experiments suggested that heterotrophic nanoflagellates are an important link between the high heterotrophic bacterial biomass and microzooplankton. In summary, these results indicate that nano- and microzooplankton were responsible for comprising a significant fraction of total microbial plankton biomass, standing stocks, growth and grazing processes. This suggests that in 2011, the microbial food web was an important compartment of the planktonic food web in the coastal southeastern Black Sea.
Czasopismo
Rocznik
Strony
139--152
Opis fizyczny
Bibliogr. 78 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey
  • Faculty of Marine Sciences, Karadeniz Technical University, Trabzon, Turkey
autor
  • Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
autor
  • Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey
  • Plymouth Marine Laboratory, Plymouth, United Kingdom
Bibliografia
  • [1] Agawin, N. S. R., Duarte, C. M., Agustí, S., 1998. Growth and abundance of Synechococcus sp. in a Mediterranean Bay: seasonality and relationship with temperature. Mar. Ecol. Prog. Ser. 170, 45-53, http://dx.doi.org/10.3354/meps170045.
  • [2] Agirbas, E., Feyzıoglu, A. M., Aytan, U., Valente, A., Kurt Yıldız, I., 2015. Are trends in SST, surface Chlorophyll-a, primary production and wind stress similar or different over the decadal scale in the south-eastern Black Sea? Cah. Biol. Mar. 56 (4), 329-336.
  • [3] Agirbas, E., Feyzioglu, A. M., Kopuz, U., Llywellyn, C. A., 2014. Phytoplankton community composition in the south-eastern Black Sea determined with pigments measured by HPLC-CHEMTAX analyses and microscopy cell counts. J. Mar. Biol. Assoc. U.K. 1-18, http://dx.doi.org/10.1017/S0025315414001040.
  • [4] Andersen, P., Fenchel, T., 1985. Bacterivory by microheterotrophic flagellates in seawater samples. Limnol. Oceanogr. 30, 198-202, http://dx.doi.org/10.4319/lo.1985.30.1.0198.
  • [5] Atkinson, A., 1996. Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey populations. Mar. Ecol. Prog. Ser. 130, 85-96, http://dx.doi.org/10.3354/meps130085.
  • [6] Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., Thingstad, F., 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257-263.
  • [7] Becquevort, S., Bouvier, T., Lancelot, C., Cauwet, G., Deliat, G., Egorov, V. N., Popovichev, V. N., 2002. The seasonal modulation of organic matter utilization by bacteria in the Danube-Black Sea mixing zone. Estuar. Coast. Shelf Sci. 54, 337-354, http://dx.doi. org/10.1006/ecss.2000.0651.
  • [8] Besiktepe, S. T., Unluata, U., Bologa, A. S., 1999. Environmental Degradation of the Black Sea: Challenges and Remedies. NATO Science Series, 2/56. Kluwer Acad. Publishers, Dordrecht, The Netherlands, 393 pp., http://dx.doi.org/10.1007/978-94-011-4568-8.
  • [9] Børsheim, K. Y., Bratbak, G., 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36, 171-175.
  • [10] Bouvier, T., Becquevort, S., Lancelot, C., 1998. Biomass and feeding activity of phagotrophic mixotrophs in the northwestern Black Sea during the summer 1995. Hydrobiologia 363, 289-301, http://dx.doi.org/10.1023/A:1003196932229.
  • [11] BSC, 2008. State of the Environment of the Black Sea (2001-2006/7). In: Oguz, T. (Ed.), Publications of the Commission on the Protection of the Black Sea Against Pollution (BSC) 2008-3, Istanbul, Turkey. 448 pp.
  • [12] Calbet, A., 2008. The trophic role of microzooplankton in marine systems. ICES J. Mar. Sci. 65, 325-331, http://dx.doi.org/10.1093/icesjms/fsn013.
  • [13] Calbet, A., Landry, M. R., 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49, 51-57, http://dx.doi.org/10.4319/lo.2004.49.1.0051.
  • [14] Calbet, A., Saiz, E., 2005. The ciliate-copepod link in marine food ecosystems. Aquat. Microb. Ecol. 38, 157-167, http://dx.doi.org/10.3354/ame038157.
  • [15] Calbet, A., Trepat, I., Almeda, R., Salo, V., Saiz, E., Movilla, J. I., Alcaraz, M., Yebra, L., Simo, R., 2008. Impacts of micro- and nanograzers on phytoplankton assessed by standard and size fractionated dilutions. Aquat. Microb. Ecol. 50, 154-156, http://dx.doi.org/10.3354/ame01171.
  • [16] Carlson, C. A., Bates, N. R., Ducklow, H. W., Hansell, D. A., 1999. Estimation of bacterial respiration and growth efficiency in the Ross Sea, Antarctica. Aquat. Microb. Ecol. 19, 229-244, http://dx.doi.org/10.3354/ame019229.
  • [17] Caron, D. A., Hutchins, D. A., 2012. The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J. Plankton Res. 35 (2), 1-18, http://dx.doi.org/10.1093/plankt/fbs091.
  • [18] Cho, B. C., Azam, F., 1990. Biogeochemical significance of bacterial biomass in the ocean's euphotic zone. Mar. Ecol. Prog. Ser. 63, 253-259.
  • [19] Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, T., Johns, W. J., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., Wehner, M., 2013. Long-term climate change: projections, commitments and irreversibility. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Doschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1029-1136, http://dx.doi.org/10.1017/CBO9781107415324.024.
  • [20] Daskalov, G. M., 2002. Overfishing drives a trophic cascade in the Black Sea. Mar. Ecol. Prog. Ser. 225, 53-63, http://dx.doi.org/10.3354/meps225053.
  • [21] Duarte, C. M., Agustí, S., Gasol, J. M., Vaqué, D., Vazquez-Dominguez, E., 2000. Effect of nutrient supply on the biomass structure of planktonic communities: an experimental test on a Mediterranean coastal community. Mar. Ecol. Prog. Ser. 206, 87-95, http://dx.doi.org/10.3354/meps206087.
  • [22] Ducklow, H. W., Hansell, D. A., Morgan, J. A., 2007. Dissolved organic carbon and nitrogen in the Western Black Sea. Mar. Chem. 105, 140-150, http://dx.doi.org/10.1016/j.marchem.2007.01.015.
  • [23] Dupuy, C., Talarmin, A., Hartmann, H. J., Delmas, D., Courties, C., Marquis, E., 2011. Community structure and grazing of the nano-microzooplankton on the continental shelf of the Bay of Biscay. Estuar. Coast. Shelf Sci. 95, 1-13, http://dx.doi.org/10.1016/j.ecss.2011.05.002.
  • [24] Edler, L. (Ed.), 1979. Phytoplankton and Chlorophyll: Recommendations on Methods for Marine Biological Studies in the Baltic Sea. Baltic Marine Biologists Publ. No. 5.
  • [25] Eker, E., Georgieva, L., Senichkina, L., Kideys, A. E., 1999. Phytoplankton distribution in the western and eastern Black Sea in spring and autumn 1995. ICES J. Mar. Sci. 56, 15-22, http://dx.doi.org/10.1006/jmsc.1999.0604.
  • [26] Eker-Develi, E., Kideys, A. E., 2003. Distribution of phytoplankton in the southern Black Sea in summer 1996, spring and autumn 1998. J. Marine Syst. 39, 203-211, http://dx.doi.org/10.1016/S0924-7963(03)00031-9.
  • [27] Fenchel, T., 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as consumers of bacteria. Mar. Ecol. Prog. Ser. 9, 35-62.
  • [28] Feyzioglu, A. M., Kurt, I., Boran, M., Sivri, N., 2004. Abundance and distribution of cyanobacteria Synechococcus spp. in the Southeastern Black Sea during 2001 summer. Indian J. Mar. Sci. 33 (4), 365-368.
  • [29] Fileman, E. S., Cummings, D. G., Llewellyn, C. A., 2002. Microplankton community structure and the impact of microzooplankton grazing during an Emiliania huxleyi bloom, off the Devon coast. J. Mar. Biol. Assoc. U.K. 82 (3), 359-368, http://dx.doi.org/10.1017/S0025315402005593.
  • [30] Fredrickson, K. A., Strom, S. L., 2009. The algal osmolyte DMSP as a microzooplankton grazing deterrent in laboratory and field studies. J. Plankton Res. 31 (2), 135-152, http://dx.doi.org/10.1093/plankt/fbn112.
  • [31] Fuhrman, J. A., Sleeter, T. D., Carlson, C. A., Proctor, L. M., 1989. Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Mar. Ecol. Prog. Ser. 57, 207-217.
  • [32] Gallegos, C. L., 1989. Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: nonlinear feeding kinetics. Mar. Ecol. Prog. Ser. 57, 23-33.
  • [33] Gasol, J. M., del Giorgio, P. A., Duarte, C. M., 1997. Biomass distribution in marine planktonic communities. Limnol. Oceanogr. 42 (6), 1353-1363, http://dx.doi.org/10.4319/lo.1997.42.6.1353.
  • [34] Gonzalez, J. M., Sherr, E. B., Sherr, B. F., 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microb. 56, 583-589.
  • [35] Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, D., Zohary, T., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403-424.
  • [36] Hobbie, J. E., Daley, R. J., Jasper, S., 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microb. 33, 1225-1228, http://dx.doi.org/10.1046/j.1529-8817.1999.3520403.x.
  • [37] Kara, B., Wallcraft, A. J., Hurlburt, H. R., Stanev, E. V., 2008. Airfluxes and river discharges in the Black Sea with a focus on Danube and Bosphorus. J. Marine Syst. 74, 74-95, http://dx.doi.org/10.1016/j.jmarsys.2007.11.010.
  • [38] Karlson, B., Godhe, A., Cusack, C., Bresnan, E., 2010. Introduction to methods for quantitative phytoplankton analysis. In: Karlson, B., Cusack, C., Bresnan, E. (Eds.), Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis. IOC Manuals and Guides, No. 55, IOC/2010/MG/55. UNESCO, Paris, 110 pp.
  • [39] Kideys, A. E., 2002. Fall and rise of the Black Sea ecosystem. Science 297, 1482-1484, http://dx.doi.org/10.1126/science.1073002.
  • [40] Kopuz, U., Feyzioglu, A. M., Agirbas, E., 2012. Picoplankton dynamics during late spring 2010 in the South-Eastern Black Sea. Turk. J. Fish. Aquat. Sci. 12, 397-405, http://dx.doi.org/10.4194/1303-2712-v12_2_28.
  • [41] Landry, M. R., 2014. On database biases and hypothesis testing with dilution experiments: response to comment by Latasa. Limnol. Oceanogr. 59 (3), 1095-1096, http://dx.doi.org/10.4319/lo.2014.59.3.1095.
  • [42] Landry, M. R., Constantinou, J., Latasa, M., Brown, S. L., Bidigare, R. R., Ondrusek, M. E., 2000. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). III. Dynamics of phytoplankton growth and microzooplankton grazing. Mar. Ecol. Prog. Ser. 201, 57-72, http://dx.doi.org/10.3354/meps201057.
  • [43] Landry, M. R., Hassett, R. P., 1982. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67, 283-288, http://dx.doi.org/10.1007/BF00397668.
  • [44] Latasa, M., 2014. Comment: A potential bias in the databases of phytoplankton growth and microzooplankton grazing rates because of the improper formulation of the null hypothesis in dilution experiments. Limnol. Oceanogr. 59 (3), 1092-1094, http://dx.doi.org/10.4319/lo.2014.59.3.1092.
  • [45] Lee, H., Kudo, I., Yanada, M., Maita, Y., 2001. Bacterial abundance and production and heterotrophic nanoflagellate abundance in subartic coastal waters (Western North Pacific Ocean). Aquat. Microb. Ecol. 23, 263-271.
  • [46] Legendre, L., Rassaulzadegan, F., 1995. Plankton and nutrient dynamics in marine water. Ophelia 42, 153-172, http://dx.doi.org/10.1080/00785236.1995.10422042.
  • [47] Linacre, L., Landry, M. R., Cajal-Medrano, R., Lara-Lara, J. R., Hernández-Ayón, J. M., Mouriño-Pérez, R. R., García-Mendoza, E., Bazán-Guzmán, C., 2012. Temporal dynamics of carbon flow through the microbial plankton community in a coastal upwelling system off northern Baja California, Mexico. Mar. Ecol. Prog. Ser. 461, 31-46, http://dx.doi.org/10.3354/meps09782.
  • [48] Menden-Deuer, S., Lessard, E. J., 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569-579, http://dx.doi.org/10.4319/lo.2000.45.3.0569.
  • [49] Nesterova, D., Moncheva, S., Mikaelyan, A., Vershinin, A., Akatov, V., Boicenco, L., Aktan, Y., Sahin, F., Gvarishvili, T., 2008. The state of phytoplankton. In: State of the Environment of the Black Sea (2001-2006/7). The Commission on the Protection of the Black Sea Against Pollution Publication. 112-147.
  • [50] Odum, E. P., 1971. Fundamentals of Ecology, 3rd ed. W. B. Saunders, Philadelphia, 574 pp.
  • [51] Oguz, T., Akoglu, E., Salihoglu, B., 2012b. Current state of over-fishing and its regional differences in the Black Sea. Ocean Coast. Manage. 58, 47-56.
  • [52] Oguz, T., Dippner, J. W., Kaymaz, Z., 2006. Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual-to-decadal time scales. J. Marine Syst. 60, 3-4, http://dx.doi.org/10.1016/j.jmarsys.2005.11.011.
  • [53] Oguz, T., Gilbert, D., 2007. Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960-2000: evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations. Deep-Sea Res. Pt. I 54, 220-242, http://dx.doi.org/10.1016/j. dsr.2006.09.010.
  • [54] Oguz, T., Merico, A., 2006. Factors controlling the summer Emiliania huxleyi bloom in the Black Sea: a modeling study. J. Marine Syst. 59, 173-188, http://dx.doi.org/10.1016/j.jmarsys.2005.08.002.
  • [55] Oguz, T., Salihoglu, B., Moncheva, S., Abaza, V., 2012a. Regional peculiarities of community-wide trophic cascades in strongly degraded Black Sea food web. J. Plankton Res. 34, 338-343, http://dx.doi.org/10.1093/plankt/fbs002.
  • [56] Oguz, T., Velikova, V., 2010. Abrupt transition of the northwestern Black Sea shelf ecosystem from a eutrophic to an alternative pristine state. Mar. Ecol. Prog. Ser. 405, 231-242, http://dx.doi.org/10.3354/meps08538.
  • [57] Pakhomova, S., Vinogradova, E., Yakushev, E., Zatsepin, A., Shtereva, G., Chasovnikov, V., Podymov, O., 2014. Interannual variability of the Black Sea Proper oxygen and nutrients regime: the role of climatic and anthropogenic forcing. Estuar. Coast. Shelf Sci. 140, 134-145, http://dx.doi.org/10.1016/j.ecss.2013.10.006.
  • [58] Parsons, T. R., Maita, Y., Lalli, C., 1984. Manual of Chemical and Biological Methods for Sea Water Analysis. Pergamon Press, Great Britain, 173 pp.
  • [59] Pomeroy, L. R., 1974. The ocean's food web, a changing paradigm. BioScience 24, 499-504, http://dx.doi.org/10.2307/1296885.
  • [60] Putt, M., Stoecker, D. K., 1989. An experimentally determined carbon: volume ratio for marine 'oligotrichous' ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34, 1097-1103.
  • [61] Schmoker, C., Hernandez-Leon, S., Calbet, A., 2013. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691-706, http://dx.doi.org/10.1093/plankt/fbt023.
  • [62] Sherr, B. F., Sherr, E. B., Andrew, T. L., Fallon, R. D., Newell, S. Y., 1986. Trophic interactions between heterotrophic protozoa and bacterioplankton in estuarine water analysed with selective metabolic inhibitors. Mar. Ecol. Prog. Ser. 32, 169-179.
  • [63] Simon, M., Cho, B. C., Azam, F. A., 1992. Significance of bacterial biomass in lakes and the ocean: comparison to phytoplankton biomass and biogeochemical implications. Mar. Ecol. Prog. Ser. 86, 103-110.
  • [64] Sommaruga, R., 1995. Microbial and classical food webs: a visit to a hypertrophic lake. FEMS Microbiol. Ecol. 17, 257-270, http://dx.doi.org/10.1111/j.1574-6941.1995.tb00150.x.
  • [65] Sorokin, Y. I., 1977. The heterotrophic phase of plankton succession in the Japan Sea. Mar. Biol. 41, 107-117, http://dx.doi.org/10.1007/BF00394018.
  • [66] Sorokin, Y. I., Sorokin, P. Y., Avdeev, V. A., Sorokin, D. Y., Ilchenko, S. V., 1995. Biomass, production and activity of bacteria in the Black Sea, with special reference to chemosynthesis and the sulfur cycle. Hydrobiologia 308, 61-76, http://dx.doi.org/10.1007/BF00037788.
  • [67] Stelmakh, L., 2013. Microzooplankton grazing impact on phytoplankton blooms in the coastal seawater of the southern Crimea (Black Sea). Int. J. Mar. Sci. 3 (15), 121-127, http://dx.doi.org/10.5376/ijms.2013.03.0015.
  • [68] Stelmakh, L. V., Babich, I. I., Tugrul, S., Moncheva, S., Stefanova, K., 2009. Phytoplankton growth rate and zooplankton grazing in the western part of the Black Sea in the autumn period. Oceanology 49, 83-92, http://dx.doi.org/10.1134/S000143700901010X.
  • [69] Stelmakh, L., Georgieva, E., 2014. Microzooplankton: the trophic role and involvement in the phytoplankton loss and bloom-for-mation in the Black Sea. Turk. J. Fish. Aquat. Sci. 14, 955-964, http://dx.doi.org/10.4194/1303-2712-v14_4_15.
  • [70] Stoecker, D. K., Capuzzo, J. M., 1990. Predation on protozoa: its importance to zooplankton. J. Plankton Res. 12 (5), 891-908, http://dx.doi.org/10.1093/plankt/12.5.891.
  • [71] Stoecker, D. K., Gifford, D. J., Putt, M., 1994. Preservation of marine planktonic ciliates: losses and cell shrinkage during fixation. Mar. Ecol. Prog. Ser. 110, 293-299.
  • [72] Strom, S. L., Wolfe, G. V., Holmes, J., Stecker, H., Shimeneck, C., Lambert, S., Moreno, E., 2003. Chemical defense in the microplankton I: feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi. Limnol. Oceanogr. 48 (1), 217-229, http://dx.doi.org/10.4319/lo.2003.48.1.0217.
  • [73] Teixeira, I., Figueiras, F. G., Crespo, B. G., Predracoba, S., 2011. Microzooplankton feeding impact in a coastal upwelling system on the NW Iberian margin: the Ria de Vigo. Estuar. Coast. Shelf Sci. 91, 110-120, http://dx.doi.org/10.1016/j.ecss.2010.10.012.
  • [74] Uysal, Z., 2001. Chroococcoid cyanobacteria Synechococcus spp. in the Black Sea: pigments, size, distribution, growth and diurnal variability. J. Plankton Res. 23 (2), 175-189, http://dx.doi.org/10.1093/plankt/23.2.175.
  • [75] Verity, P. G., Langdon, C., 1984. Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6, 859-868, http://dx.doi.org/10.1093/plankt/6.5.859.
  • [76] Verity, P. G., Wassmannb, P., Frischera, M. E., Howard-Jonesa, M. H., Alle, A. E., 2002. Grazing of phytoplankton by microzooplankton in the Barents Sea during early summer. J. Marine Syst. 38, 109-123, http://dx.doi.org/10.1016/S0924-7963(02)00172-0.
  • [77] Waterbury, J. B., Valois, F. W., Franks, D. G., 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In: Platt, T., Li, W. K. W. (Eds.), Photosynthetic Picoplankton. Can. Bull. Fish. Aquat. Sci. 214, 71-120.
  • [78] Worden, A. Z., Binder, B. J., 2003. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat. Microb. Ecol. 30, 159-174.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-490374e2-dcdf-4c3f-9872-7915a373fac5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.