Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Additive manufacturing (AM), i.e., 3D printing, has seen significant growth in recent years in all industries due to its potential advantages, requiring the polymers that are adapted as for melt flow index (MFI) to this use to have adequate tensile strength as well. Hence, in this work, a novel ligno-cellulosic fiber from Cryptostegia grandiflora (CG) and polylactic acid (PLA) were blended to obtain a filament for AM using a twin screw extruder. To determine the filament’s suitability for the 3D printing process, MFI and thermal degradation were examined. In order to identify the distribution and the effect of CG fiber (CGF) filler on the matrix, the filaments were examined using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). CGF powder distribution was observed in the microstructure of the CGF/PLA composite filament. Due to the high compatibility between PLA and CGF, their blending slightly increased the degradation temperature, though did not lead to any crystallinity loss, and the CGF/PLA filament showed 12.5% better tensile characteristics than the pure PLA filament. Based on their performance, the CGF may represent a suitable and compatible filler to improve the properties of the PLA filament for 3D printing applications.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, School of Mech, Auto, Aero and Civil Engineering, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, Virudhunagar Dt., India
autor
- Department of Mechanical Engineering, School of Mech, Auto, Aero and Civil Engineering, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, Virudhunagar Dt., India
autor
- Department of Mechanical Engineering, School of Mech, Auto, Aero and Civil Engineering, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, Virudhunagar Dt., India
autor
- Department of Mechanical Engineering, School of Mech, Auto, Aero and Civil Engineering, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, Virudhunagar Dt., India
autor
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
autor
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
autor
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, 71800 Nilai, Negeri Sembilan, Malaysia
autor
- School of Science and Technology, Geology Section, University of Camerino, Camerino, Italy
Bibliografia
- [1] Mahmood, A., Akram, T., Chen, H., Chen, S., On the evolution of additive manufacturing (3D/4D printing) technologies: Materials, applications, and challenges, Polymers, 2022, 14: 4698
- [2] Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., Hui, D., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. Part. B, 2018, 143: 172–196
- [3] Przybytek, A., Kucińska-Lipka, J., Janik, H., Thermoplastic elastomer filaments and their application in 3D printing, Elastomery, 2016, 2016(20): 32–39
- [4] Zhu, W., Pyo, S. H., Wang, P., You, S., Yu, C., Alido, J., et al., Three-dimensional printing of bisphenol A-free polycarbonates, ACS Appl. Mater. Interfaces, 2018, 10(6): 5331–5339
- [5] Żur, P., Kołodziej, A., Baier, A., Kokot, G., Optimization of ABS 3D-printing method and parameters, Eur. J. Eng. Sci. Technol., 2020, 3(1): 44–51
- [6] Zhang, Y., Purssell, C., Mao, K., Leigh, S., A physical investigation of wear and thermal characteristics of 3D printed nylon spur gears, Tribol. Int., 2020, 141: 105953
- [7] Liu, L., Lin, M., Xu, Z., Lin, M., Polylactic acid-based wood-plastic 3D printing composite and its properties, BioResources, 2019, 14(4): 8484–8498
- [8] Singh, S., Singh, G., Prakash, C., Ramakrishna, S., Current status and future directions of fused filament fabrication, J. Manuf. Process., 2020, 55: 288–306
- [9] Maurus, P. B., Kaeding, C. C., Bioabsorbable implant material review, Oper. Tech. Sports Med., 2004, 12: 158–160
- [10] Iheaturu, N. C., Diwe, I. V., Banigo, A. T., Daramola, O. O., Sadiku, E. R., Synthesis of polymeric biomaterial for medicine and surgery, In: Gnanasekaran, D., editor, Green biopolymers and their nanocomposites, Springer, Berlin, Germany, 2019, pp. 267–282
- [11] Krishnan, S., Pandey, P., Mohanty, S., Nayak, S. K., Toughening of polylactic acid: An overview of research progress, Polym. Plast. Technol. Eng., 2016, 55(15): 1623–1652
- [12] Ferri, J. M., Jordá, J., Montanes, N., Fenollar, O., Balart, R., Manufacturing and characterization of poly (lactic acid) composites with hydroxyapatite, J. Thermoplast. Compos. Mater., 2018, 31(7): 865–881
- [13] Umerah, C. O., Kodali, D., Head, S., Jeelani, S., Rangari, V. K., Synthesis of carbon from waste coconut shell and their application as filler in bioplast polymer filaments for 3D printing, Compos. Part. B Eng., 2020, 202: 108428
- [14] Lohar, D. V., Nikalje, A. M., Damle, P. G., Development and testing of hybrid green polymer composite (HGPC) filaments of PLA reinforced with waste bio fillers, Mater. Today Proc., 2022, 62: 818–824
- [15] Calì, M., Pascoletti, G., Gaeta, M., Milazzo, G., Ambu, R., A new generation of bio-composite thermoplastic filaments for a more sustainable design of parts manufactured by FDM, Appl. Sci., 2020, 10(17): 5852
- [16] Bhagia, S., Bornani, K., Agrawal, R., Satlewal, A., Ďurkovič, J., Lagaňa, R., et al., Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries, Appl. Mater. Today, 2021, 24: 101078
- [17] Lee, C. H., Padzil, F. N. B. M., Lee, S. H., Ainun, Z. M. A. A., Abdullah, L. C., Potential for natural fiber reinforcement in PLA polymer filaments for fused deposition modeling (FDM) additive manufacturing: A review, Polymers, 2021, 13(9): 1407
- [18] Udhayakumar, A., Mayandi, K., Rajini, N., Devi, R. K., Muthukannan, M., Murali, M., Extraction and characterization of novel natural fiber from Cryptostegia grandiflora as a potential reinforcement in biocomposites, J. Nat. Fibers, 2023, 20(1): 2159607
- [19] Mohan, A., Priya, R. K., Arunachalam, K. P., Avudaiappan, S., Maureira-Carsalade, N., Roco-Videla, A., Investigating the mechanical, thermal, and crystalline properties of raw and potassium hydroxide treated butea parviflora fibers for green polymer composites, Polymers, 2023, 15(17): 3522
- [20] Wang, S., Capoen, L., D’hooge, D. R., Cardon, L., Can the melt flow index be used to predict the success of fused deposition modelling of commercial poly (lactic acid) filaments into 3D printed materials?, Plast., Rubber Compos., 2018, 47(1): 9–16
- [21] Nasir, M. H. M., Taha, M. M., Razali, N., Ilyas, R. A., Knight, V. F., Norrrahim, M. N. F., Effect of chemical treatment of sugar palm fibre on rheological and thermal properties of the PLA composites filament for FDM 3D printing, Materials, 2022, 15(22): 8082
- [22] Deb, D., Jafferson, J. M., Natural fibers reinforced FDM 3D printing filaments, Mater. Today Proc., 2021, 46: 1308–1318
- [23] Song, X., He, W., Han, X., Qin, H., Fused deposition modeling of poly (lactic acid)/nutshells composite filaments: Effect of alkali treatment, J. Polym. Environ., 2020, 28: 3139–3152
- [24] Ohaeri, O., Cree, D., Development and characterization of PHB-PLA/corncob composite for fused filament fabrication, J. Compos. Sci., 2022, 6(9): 249
- [25] Mansingh, B. B., Binoj, J. S., Tan, Z. Q., Wong, W. L. E., Amornsakchai, T., Hassan, S. A., et al., Characterization and performance of additive manufactured novel biowaste polylactic acid eco-friendly composites, J. Polym. Environ., 2023, 31: 2306–2320
- [26] Magalhães da Silva, S. P., Antunes, T., Costa, M. E. V., Oliveira, J. M., Cork-like filaments for Additive Manufacturing, Addit. Manuf., 2020, 34: 101229
- [27] Ahmad, N. D., Wildan, M. W., Preparation and properties of cellulose nanocrystals-reinforced poly (lactic acid) composite filaments for 3D printing applications, Results Eng., 2023, 17: 100842
- [28] Vârban, R., Crișan, I., Vârban, D., Ona, A., Olar, L., Stoie, A., et al., Comparative FT-IR prospecting for cellulose in stems of some fiber plants: Flax, velvet leaf, hemp and jute, Appl. Sci., 2021, 11(18): 8570
- [29] Lv, P., Perre, P., Perré, G. A., TGA-FTIR analysis of torrefaction of lignocellulosic components (cellulose, xylan, lignin) in isothermal conditions over a wide range of time durations, BioResources, 2015, 10(3): 4239–4251
- [30] Oh, S. Y., Yoo, D. I., Shin, Y., Seo, G., FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide, Carbohydr. Res., 2005, 340(3): 417–428
- [31] Hospodarova, V., Singovszka, E., Stevulova, N., Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials, Am. J. Anal. Chem., 2018, 9(6): 303–310
- [32] Sugumaran, P., Susan, V. P., Ravichandran, P., Seshadri, S., Production and characterization of activated carbon from banana empty fruit bunch and Delonix regia fruit pod, J. Sustain. Energy Environ., 2012, 3(3): 125–132
- [33] Popescu, C.M., Popescu,M. C., Vasile, C., Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy, Microchem. J., 2010, 95(2): 377–387
- [34] Johny, V., Kuriakose Mani, A., Palanisamy, S., Rajan, V. K., Palaniappan, M., Santulli, C., Extraction and physicochemical characterization of pineapple crown leaf fibers (PCLF), Fibers, 2023, 11(1): 5
- [35] Wang, X., Hu, Y., Song, L., Xuan, S., Xing, W., Bai, Z., et al., Flame retardancy and thermal degradation of intumescent flame retardant poly (lactic acid)/starch biocomposites, Ind. Eng. Chem. Res., 2011, 50(2): 713–720
- [36] Udhayakumar, A., Mayandi, K., Rajini, N., Devi, R. K., Muthukannan M., Murali M., et al., Effect of chemical treatment on physico-chemical properties of a novel extracted cellulosic Cryptostegia grandiflora fiber, Mater. Res. Express, 2023, 10(7): 075508
- [37] Mathew A. P., Oksman K., Sain M., The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid, J. Appl. Polym. Sci., 2006, 101: 300–310
- [38] Revati R., Majid M. A., Ridzuan M. J. M., Basaruddin K. S., Cheng E. M., Gibson A. G., In vitro degradation of a 3D porous Pennisetum purpureum/PLA biocomposite scaffold, J. Mech. Behav. Biomed. Mater., 2017, 74: 383–391
- [39] Park S., Baker J. O., Himmel M. E., Parilla P. A., Johnson D. K., Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnol. Biofuels, 2010, 3: 1–10
- [40] French A. D., Santiago Cintrón M., Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index, Cellulose, 2013, 20: 583–588
- [41] Marathe Y. N., Arun Torris A. T., Ramesh C., Badiger M. V., Borassus powder‐reinforced poly (lactic acid) composites with improved crystallization and mechanical properties, J. Appl. Polym. Sci., 2019, 136(18): 47440
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4902e479-8766-4a48-bd07-8140a954d85b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.