PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability margins for generalized fractional two-dimensional state space models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a new class of bidimensional fractional linear systems is considered. The stability radius of the disturbed system is described according to the H norm. Sufficient conditions to ensure the stability margins of the closed-loop system are offered in terms of linear matrix inequalities. The concept of D stability region for these systems is also considered. Examples are provided to verify the applicability of our main result.
Rocznik
Strony
23--37
Opis fizyczny
Bibliogr. 25 poz., wzory
Twórcy
autor
  • Department of Mathematics and Computer Science, ACSY Team-Laboratory of Pure and Applied Mathematics, Abdelhamid Ibn Badis University Mostaganem, P.O. Box 227/118, 27000 Mostaganem, Algeria
  • National Higher School of Mathematics, Scientific and Technology Hub of Sidi Abdellah, ACSY Team-Laboratory of Pureand Applied Mathematics (UMAB), P.O. Box 75, Algiers 16093, Algeria
Bibliografia
  • [1] D. Bouagada and P. Van Dooren: Stability margins for generalized state space systems. Applied Mathematics Letters, 19(5), (2006), 451-457. DOI: 10.1016/j.aml.2005.06.015
  • [2] K. Benyettou and D. Bouagada: Admissibility tests for multidimensional singular fractional continuous-time models. Archives of Control Sciences, 32(3), (2022), 607-625. DOI: 10.24425/acs.2022.142851
  • [3] K. Bettou and A. Charef: Fractional order PI𝜆D𝜇A controller design based on Bode’s ideal function. Archives of Control Sciences, 33(2), (2023), 425-458. DOI: 10.24425/acs.2023.146428
  • [4] R. Hilfer, R. Metzler, A. Blumen and J. Klafter: Strange kinetics. Chemical Physics, 284(1), (2002), 104-301. DOI: 10.1016/S0301-0104(02)00801-7
  • [5] T. Chiranjeevi, R. Devarapalli, N.R. Babu, K.B. Vakkapatla, R.G.S. Rao and F.P. Garcia Marquez: Fixed terminal time fractional optimal control problem for discrete time singular system. Archives of Control Sciences, 32(3), (2022), 489-506. DOI: 10.24425/acs.2022.142846
  • [6] M. Chilali, P. Gahinet and P. Apkarian: Robust pole placement in LMI regions. IEEE Transactions on Automatic Control, 44(12), (1999), 2257-2269. DOI: 10.1109/9.811208
  • [7] E. Fornasini and G. Marchesini: State-space realization theory of two-dimensional filters. IEEE Transactions on Automatic Control, 21(4), (1976), 484-492. DOI: 10.1109/TAC.1976.1101305
  • [8] K. Galkowski: The Fornasini-Marchesini and the Roesser models: Algebraic methods for recasting. IEEE Transactions on Automatic Control, 41(1), (1996), 107-112. DOI: 10.1109/9.481611
  • [9] D.D. Givone and R.P. Roesser: Multidimensional linear iterative circuits - general properties. IEEE Transactions on Computers, 21(10), (1972), 1067-1073. DOI: 10.1109/TC.1972.223453
  • [10] R. Hilfer: Applications of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore, 2000, DOI: 10.1142/3779
  • [11] T. Kaczorek and K. Rogowski: Fractional Linear Systems and Electrical Circuits. Studies in Systems, Decision and Control, Springer International Publishing Switzerland, 2015.
  • [12] T. Kaczorek: Selected Problems of Fractional Systems Theory. Springer-Verlag, Berlin Heidelberg, 2011.
  • [13] T. Kaczorek: Positivity and stabilization of fractional 2D Roesser model by state-feedbacks. LMI approach. Archives of Control Sciences, 19(2), (2009), 165-177.
  • [14] T. Kaczorek: Two Dimensional Linear Systems. Springer Verlag, Berlin, 1985. DOI: 10.1007/BFb0005617
  • [15] N.A. Khan, M.A. Qureshi, S. Akbar and A. Ara: Probing 3D chaotic Thomas’ cyclically attractor with multimedia encryption and electronic circuitry. Archives of Control Sciences, 33(1), (2023), 239-271. DOI: 10.24425/acs.2023145120
  • [16] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo: Theory and Applications of Fractional Differential Equations. Elsevier r.v., Amsterdam, The Netherlands, 204 2006.
  • [17] Y-H. Lan and Y. Zhou: LMI-based robust control of fractional-order uncertain linear systems. Computers and Mathematics with Applications, 61(3), (2011), 1460-1471. DOI: 10.1016/j.camwa.2011.03.028
  • [18] J-G. Lu, and Y-Q. Chen: Robust stability and stabilization of fractional order interval systems with the fractional order: The case 0 < 𝛼 < 1. IEEE Transactions on Automatic Control, 55(1), (2010), 152-158. DOI: 10.1109/TAC.2009.2033738
  • [19] F. Mainardi: Fractals and Fractional Calculus in Continuum Mechanics. Springer-Verlag Wien, New York, 378, 1997.
  • [20] W. Marszalek: Two-dimensional state-space discrete models for hyperbolic partial differential equations. Applied Mathematical Modelling, 8(1), (1984), 11-14. DOI: 10.1016/0307-904X(84)90170-7
  • [21] D. Peaucelle, D. Arzelier, O. Bachelier and J. Bernussou: A new robust D-stability condition for real convex polytopic uncertainty. Systems & Control Letters, 40(1), (2000), 21-30. DOI: 10.1016/S0167-6911(99)00119-X
  • [22] I. Podlubny: Fractional Differential Equations. Mathematics in science and Engineering, 198, 1998.
  • [23] R. Roesser: A discrete state-space model for linear image processing. IEEE Transactions on Automatic Control, 20(1), (1975), 1-10. DOI: 10.1109/TAC.1975.1100844
  • [24] A. Soukkou, Y. Soukkou, S. Haddad, M. Benghaem and A. Rabhi: Review, design, stabilization and synchronization of fractional-order energy resources demand-supply hyperchaotic systems using fractional-order PD-based feedback control scheme. Archives of Control Sciences, 33(3), (2023), 539-563. DOI: 10.24425/acs.2023.146957
  • [25] Y. Zou, H. Xu and W. Wang: Stability for two-dimensional singular discrete systems described by general model. Multidimensional Systems and Signal Processing, 19, (2008), 219-229.
Uwagi
This paper presents research results of the ACSY-Team (Analysis & Control systems team) and of the doctorial training on the Operational Research and Decision Support from the Pure and Applied Mathematics Laboratory, UMAB, funded by the General Directorate for Scientific Research and Technological Development of Algeria (DGRSDT) and supported by Abdelhamid Ibn Badis University-Mostaganem (UMAB) and initiated by the concerted research project on Control and Systems theory (PRFU Project Code C00L03UN270120200003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48ff682b-2d8d-44f0-b790-57d71d5e1608
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.