PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance of Reactive Nitrogen in Leachate Treatment in Constructed Wetlands

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reactive Nitrogen (Nr) is produced from natural and human activity, the use of fuel, the activities of industry, and agriculture. The Nr from agriculture is used to produce food crops, but excess Nr has an impact on the surrounding land. Landfills also generate Nr from the decomposition of waste which then releases the leachate containing Nr. This study aimed to determine the value of Nr generated by landfills, the effect of Nr on the environment, and the performance of Nr when used in Constructed Wetlands (CW). Review papers were collected from several studies and publications. Nr commonly found in leachate landfills include: NH4, NH3, NO2, and NO3. The Nr present in landfill leachate at CW can be used for proper plant development and growth, which significantly increases and enhances its quality and yield by playing an important role in the biochemical and physiological functions of plants. In addition, the content of hazardous substances in landfill leachate can also be processed using CW. This review paper discusses the effects of Nr from human activities ending up in landfills. The landfill leachate with Nr content can be used in CW for plant growth.
Rocznik
Strony
205--213
Opis fizyczny
Bibliogr. 82 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
Bibliografia
  • 1. Ahmad, S., Ahmad, R., Ashraf, M.Y., Ashraf, M., Waraich, E.A., 2009. Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pakistan J. Bot.
  • 2. Anjana, Umar, S., Iqbal, M., 2007. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustain. Dev. https://doi.org/10.1051/agro:2006021.
  • 3. Arliyani, I., Tangahu, B.V. and Mangkoedihardjo, S., 2021. Plant diversity in a constructed wetland for pollutant parameter processing on leachate: A review. Journal of Ecological Engineering, 22(4), 240-255.
  • 4. Bach, M., Häußermann, U., Klement, L., Knoll, L., Breuer, L., Weber, T., Fuchs, S., Heldstab, J., Reutimann, J., Schäppi, B., 2020. Reactive Nitrogen Flows in Germany 2010–2014 (DESTINO Report 2).
  • 5. Bodirsky, B.L., Popp, A., Lotze-Campen, H., Dietrich, J.P., Rolinski, S., Weindl, I., Schmitz, C., Müller, C., Bonsch, M., Humpenöder, F., Biewald, A., Stevanovic, M., 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5. https://doi.org/10.1038/ncomms4858
  • 6. Braun, E., 2007. Reactive nitrogen in the environment: too much or too little of a good thing. UNEP/ Earthprint.
  • 7. Breitburg, D.L., Hondorp, D.W., Davias, L.A., Diaz, R.J., 2009. Hypoxia, nitrogen, and fisheries: Integrating effects across local and global landscapes. Ann. Rev. Mar. Sci. https://doi.org/10.1146/annurev.marine.010908.163754
  • 8. Callesen, I., Carter, M.S., Østergård, H., 2011. Efficient use of reactive nitrogen for cultivation of bioenergy: Less is more. GCB Bioenergy 3, 171–179. https://doi.org/10.1111/j.1757–1707.2010.01072.x
  • 9. Cayuela, M.L., Sánchez-Monedero, M.A., Roig, A., Hanley, K., Enders, A., Lehmann, J., 2013. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Sci. Rep. https://doi.org/10.1038/srep01732
  • 10. Ciacka, K., Krasuska, U., Staszek, P., Wal, A., Zak, J., Gniazdowska, A., 2020. Effect of Nitrogen Reactive Compounds on Aging in Seed. Front. Plant Sci. 11, 1–7. https://doi.org/10.3389/fpls.2020.01011
  • 11. Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., Lancelot, C., Likens, G.E., 2009. Ecology-controlling eutrophication: Nitrogen and phosphorus. Science, 323(5917), 1014-1015. https://doi.org/10.1126/science.1167755
  • 12. Costa, A.M., Alfaia, R.G. de S.M., Campos, J.C., 2019. Landfill leachate treatment in Brazil – An overview. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2018.11.006
  • 13. Cui, L., Li, W., Zhang, Y., Wei, J., Lei, Y., Zhang, M., Pan, X., Zhao, X., Li, K., Ma, W., 2016. Nitrogen removal in a horizontal subsurface flow constructed wetland estimated using the first-order kinetic model. Water (Switzerland) 8. https://doi.org/10.3390/w8110514
  • 14. Dajić, A., Mihajlović, M., Jovanović, M., Karanac, M., Stevanović, D., Jovanović, J., 2016. Landfill design: Need for improvement of water and soil protection requirements in EU Landfill Directive. Clean Technol. Environ. Policy. https://doi.org/10.1007/s10098–015–1046–2
  • 15. Davidson, E.A., 2009. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. https://doi.org/10.1038/ngeo608
  • 16. De Vries, W., Kros, J., Kroeze, C., Seitzinger, S.P., 2013. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. https://doi.org/10.1016/j.cosust.2013.07.004
  • 17. Diaz, R.J., Rosenberg, R., 2008. Spreading dead zones and consequences for marine ecosystems. Science, 80. https://doi.org/10.1126/science.1156401
  • 18. Dong, Z., Sun, T., 2007. A potential new process for improving nitrogen removal in constructed wetlands-Promoting coexistence of partial-nitrification and ANAMMOX. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2007.04.009
  • 19. Dorais, M., Papadopoulos, A.P., Gosselin, A., 2010. Greenhouse Tomato Fruit Quality, in: Horticultural Reviews. https://doi.org/10.1002/9780470650806.ch5
  • 20. Dordio, A.V., Estêvão Candeias, A.J., Pinto, A.P., Teixeira da Costa, C., Palace Carvalho, A.J., 2009. Preliminary media screening for application in the removal of clofibric acid, carbamazepine and ibuprofen by SSF-constructed wetlands. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2008.02.014
  • 21. Erisman, J.W., Galloway, J., Seitzinger, S., Bleeker, A., Butterbach-Bahl, K., 2011. Reactive nitrogen in the environment and its effect on climate change. Curr. Opin. Environ. Sustain. 3, 281–290. https://doi.org/10.1016/j.cosust.2011.08.012
  • 22. Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S., Sheppard, L.J., Jenkins, A., Grizzetti, B., Galloway, J.N., Vitousek, P., Leach, A., Bouwman, A.F., Butterbach-Bahl, K., Dentener, F., Stevenson, D., Amann, M., Voss, M., 2013. The global nitrogen cycle in the Twentyfirst century. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2013.0164
  • 23. Fuchs, V.J., 2011. Nitrogen Removal and Sustainability of Vertical Flow Constructed Wetlands for Small Scale Wastewater Treatment: Recommendations for Improvement. Water Intell. Online. https://doi.org/10.2166/9781843395324
  • 24. Garnett, T.P., Shabala, S.N., Smethurst, P.J., Newman, I.A., 2001. Simultaneous measurement of ammonium, nitrate and proton fluxes along the length of eucalypt roots. Plant Soil. https://doi.org/10.1023/A:1011951413917
  • 25. Gupta, P., Ann, T.W., Lee, S.M., 2016. Use of biochar to enhance constructed wetland performance in wastewater reclamation. Environ. Eng. Res. 21, 36–44. https://doi.org/10.4491/eer.2015.067
  • 26. Holmes, D.E., Dang, Y., Smith, J.A., 2019. Nitrogen cycling during wastewater treatment, 1st ed, Advances in Applied Microbiology. Elsevier Inc. https://doi.org/10.1016/bs.aambs.2018.10.003
  • 27. Ibrahim, K.A., Naz, M.Y., Shukrullah, S., Sulaiman, S.A., Ghaffar, A., AbdEl-Salam, N.M., 2020. Nitrogen Pollution Impact and Remediation through Low Cost Starch Based Biodegradable polymers. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598–020–62793–3
  • 28. Johannesson, K.M., Tonderski, K.S., Ehde, P.M., Weisner, S.E.B., 2017. Temporal phosphorus dynamics affecting retention estimates in agricultural constructed wetlands. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2015.11.050
  • 29. Kadlec, R.H., Wallace, S.D., 2009. Treatment Wetlands, Second Edition, Treatment Wetlands, Second Edition. https://doi.org/10.1201/9781420012514
  • 30. Kahar, A., 2017. Perpindahan Massa Fase Cair Pada Pengolahan Lindi TPA Sampah Kota Dalam Bioreaktor Anaerobik.
  • 31. Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J., Garnier, J., 2014. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. https://doi.org/10.1088/1748–9 326/9/10/105011
  • 32. Lavrnić, S., Braschi, I., Anconelli, S., Blasioli, S., Solimando, D., Mannini, P., Toscano, A., 2018. Long-term monitoring of a surface flow constructed wetland treating agricultural drainagewater in Northern Italy. Water (Switzerland). https://doi.org/10.3390/w10050644
  • 33. Leach, A.M., Galloway, J.N., Bleeker, A., Erisman, J.W., Kohn, R., Kitzes, J., 2012. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ. Dev. https://doi.org/10.1016/j.envdev.2011.12.005
  • 34. Lee, C.G., Fletcher, T.D., Sun, G., 2009. Nitrogen removal in constructed wetland systems. Eng. Life Sci. 9, 11–22. https://doi.org/10.1002/elsc.200800049
  • 35. Leghari, S.J., Wahocho, N.A., Laghari, G.M., HafeezLaghari, A., MustafaBhabhan, G., Talpur, K.H., Bhutto, T., Wahocho, S., Lashari, A.A., 2016. Role of nitrogen for plant growth and development : A review. Adv. Environ. Biol. 10, 209–219.
  • 36. Lewin, R.A., 1999. Algae and Element Cycling in Wetlands. Phycologia. https://doi.org/10.2216/i0031–8884–38–4–342a.1
  • 37. Li, L., Li, Y., Biswas, D.K., Nian, Y., Jiang, G., 2008. Potential of constructed wetlands in treating the eutrophic water: Evidence from Taihu Lake of China. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2007.04.001
  • 38. Liu, X., Niu, H., Yan, H., Ding, Z., Lu, F., Ma, X., Yang, L., Liu, Y., 2013. Research and application of high-efficiency eco-engineering rural sewage treatment system. Nongye Gongcheng Xuebao/Transactions Chinese Soc. Agric. Eng. https://doi.org/10.3969/j.issn.1002–6819.2013.09.024
  • 39. Liu, Y., Xu-Ri, Xu, X., Wei, D., Wang, Yinghong, Wang, Yuesi, 2013. Plant and soil responses of an alpine steppe on the Tibetan Plateau to multi-level nitrogen addition. Plant Soil. https://doi.org/10.1007/s11104–013–1814-x
  • 40. Mangkoedihardjo, S. and Triastuti, Y., 2011. Vetiver in phytoremediation of mercury polluted soil with the addition of compost. Journal of Applied Sciences Research, (April), 465-469.
  • 41. Mangkoedihardjo, S. and Samudro, G., 2014. Research strategy on kenaf for phytoremediation of organic matter and metals polluted soil. Advances in Environmental Biology, 8(17), 64-67.
  • 42. Marsili-Libelli, S., 2010. Modelling and automation of water and wastewater treatment processes. Environ. Model. Softw. https://doi.org/10.1016/j.envsoft.2009.11.002
  • 43. Massignam, A.M., Chapman, S.C., Hammer, G.L., Fukai, S., 2009. Physiological determinants of maize and sunflower grain yield as affected by nitrogen supply. F. Crop. Res. https://doi.org/10.1016/j.fcr.2009.06.001
  • 44. McCabe, A.J., Arnold, W.A., 2016. Seasonal and spatial variabilities in the water chemistry of prairie pothole wetlands influence the photoproduction of reactive intermediates. Chemosphere. https://doi.org/10.1016/j.chemosphere.2016.04.078
  • 45. Miao, L., Yang, G., Tao, T., Peng, Y., 2019. Recent advances in nitrogen removal from landfill leachate using biological treatments – A review. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2019.01.057
  • 46. Moktar, K.A., Mohd Tajuddin, R., 2019. Phytoremediation of heavy metal from leachate using imperata cylindrica . MATEC Web Conf. 258, 01021. https://doi.org/10.1051/matecconf/201925801021
  • 47. Morvannou, A., Choubert, J.M., Vanclooster, M., Molle, P., 2014. Modeling nitrogen removal in a vertical flow constructed wetland treating directly domestic wastewater. Ecol. Eng. 70, 379–386. https://doi.org/10.1016/j.ecoleng.2014.06.034
  • 48. Noor, A.M., Shiam, L.C., Hong, F.W., Soetardjo, S., Khalil, H.P.S.A., 2010. Application of Vegetated Constructed Wetland with Different Filter Media for Removal of Ammoniacal Nitrogen and Total Phosphorus in Landfill Leachate. Int. J. Chem. Eng. Appl. 270–275. https://doi.org/10.7763/ijcea.2010.v1.47
  • 49. Rafiq, M.A., Ali, A., Malik, M.A., Hussain, M., 2010. Effect of fertilizer levels and plant densities on yield and protein contents of autumn planted maize. Pakistan J. Agric. Sci.
  • 50. Ravishankara, A.R., Daniel, J.S., Portmann, R.W., 2009. Nitrous oxide (N2O): The dominant ozonedepleting substance emitted in the 21st century. Scienc, 326(5949), 123-125. https://doi.org/10.1126/science.1176985
  • 51. Raza, S., Zhou, J., Aziz, T., Afzal, M.R., Ahmed, M., Javaid, S., Chen, Z., 2018. Piling up reactive nitrogen and declining nitrogen use efficiency in Pakistan: A challenge not challenged (1961–2013). Environ. Res. Lett. 13. https://doi.org/10.1088/1748–9326/aaa9c5
  • 52. Reinhardt, M., Gächter, R., Wehrli, B., Müller, B., 2005. Phosphorus Retention in Small Constructed Wetlands Treating Agricultural Drainage Water. J. Environ. Qual. https://doi.org/10.2134/jeq2004.0325
  • 53. Rice, E.W. Baird, R.B. Eaton, A.D., 2017. Standard Methods for the Examination of Water and Wastewater , 23rd Edition, Journal of Chemical Information and Modeling.
  • 54. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F.S., Lambin, E.F., Lenton, T.M., Scheffer, M., Folke, C., Joachim, H., Schnellhuber, Nykvist, B., de Wit, C.A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R.W., Fabry, V.J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., Foley, J.K., 2013. A safe operating space for humanity, in: The Future of Nature: Documents of Global Change. https://doi.org/10.1126/science.281.5374.190
  • 55. Rousseau, D.P.L., Vanrolleghem, P.A., De Pauw, N., 2004. Model-based design of horizontal subsurface flow constructed treatment wetlands: A review. Water Res. https://doi.org/10.1016/j.watres.2003.12.013
  • 56. Samudro, G., Mangkoedihardjo, S., 2020. Mixed plant operations for phytoremediation in polluted environments – A critical review 12, 99–103. https://doi.org/10.25081/jp.2020.v12.6454
  • 57. Samudro, H., & Mangkoedihardjo, S. 2021. Indoor phytoremediation using decorative plants: An overview of application principles. Journal of Phytology, 13(6), 28-32.
  • 58. Schlesinger, W.H., 2009. On the fate of anthropogenic nitrogen. Proc. Natl. Acad. Sci. U.S.A. https://doi.org/10.1073/pnas.0810193105
  • 59. Sengupta, S., Nawaz, T., Beaudry, J., 2015. Nitrogen and Phosphorus Recovery from Wastewater. Curr. Pollut. Reports 1, 155–166. https://doi.org/10.1007/s40726–015–0013–1
  • 60. Silvestrini, N.E.C., Hadad, H.R., Maine, M.A., Sánchez, G.C., del Carmen Pedro, M., Caffaratti, S.E., 2019. Vertical flow wetlands and hybrid systems for the treatment of landfill leachate. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356–019–04280–5
  • 61. Sim, C.H., Quek, B.S., Shutes, R.B.E., Goh, K.H., 2013. Management and treatment of landfill leachate by a system of constructed wetlands and ponds in Singapore. Water Sci. Technol. https://doi.org/10.2166/wst.2013.352
  • 62. Soares, E., Hamid A., and Mangkoedihardjo S. 2021. Phytoremediation of zinc polluted soil using sunflower (Helianthus annuus L.). Journal of Phytology, 13, 9-12
  • 63. Souza, E.F.C., Rosen, C.J., Venterea, R.T., 2019. Contrasting effects of inhibitors and biostimulants on agronomic performance and reactive nitrogen losses during irrigated potato production. F. Crop. Res. 240, 143–153. https://doi.org/10.1016/j.fcr.2019.05.001
  • 64. Spokas, K.A., Novak, J.M., Venterea, R.T., 2012. Biochar’s role as an alternative N-fertilizer: Ammonia capture. Plant Soil. https://doi.org/10.1007/s11104–011–0930–8
  • 65. Sutton, M., Howard, C., Erisman, J., 2011. The European nitrogen assessment: sources, effects and policy perspectives. Cambridge Univ. Press.
  • 66. Sutton MA, Bleeker A, Bekunda M, Grizzetti B, de Vries W, van Grinsven HJM, Abrol YP, Adhya TK, Billen G, Davidson EA, Datta A, Diaz R, Erisman JW, Liu XJ, Oenema O, Palm C, Raghuram N, Reis S, Scholz RW, Sims T, Yan XY, Zhang Y, 2013. Our Nutrient World: The challenge to produce more food and energy with less pollution, Centre for Ecology and Hydrology (CEH), Edinburgh UK on behalf of the Global Partnership on Nutrient Management and International Nitrogen Initiative.
  • 67. Szporak-Wasilewska, S., Piniewski, M., Kubrak, J., Okruszko, T., 2015. What we can learn from a wetland water balance? Narew National Park case study. Ecohydrol. Hydrobiol. https://doi.org/10.1016/j.ecohyd.2015.02.003
  • 68. Taghizadeh-Toosi, A., Clough, T.J., Sherlock, R.R., Condron, L.M., 2012. Biochar adsorbed ammonia is bioavailable. Plant Soil. https://doi.org/10.1007/s11104–011–0870–3
  • 69. Takahashi, M., Morikawa, H., 2014. Nitrogen dioxide is a positive regulator of plant growth. Plant Signal. Behav. 9, 8–11. https://doi.org/10.4161/psb.28033.
  • 70. Tangahu, B.V., Kartika, A.A.G., Sambodho, K., Marendra, S.M.P., Arliyani, I. 2021. Shallow groundwater pollution index around the location of Griyo Mulyo Landfill (Jabon Landfill) in Jabon District, Sidoarjo Regency, East Java, Indonesia. Journal of Ecological Engineering, 22(3), 199–210.
  • 71. Ullah, M.A., Anwar, M., Rana, A.S., 2010. Effect of nitrogen fertilization and harvesting intervals on the yield and forage quality of elephant grass (Pennisetum purpureum) under mesic climate of Pakistan J. Agric.
  • 72. United Nations Environment Programme (UNEP), 2014. Air Pollution: World’s Worst Environmental Health Risk. UNEP Year B. Emerg. Issues Updat.
  • 73. Verhamme, D.T., Prosser, J.I., Nicol, G.W., 2011. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. https://doi.org/10.1038/ismej.2010.191
  • 74. Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2006.09.014
  • 75. Wang, C., Zhou, J., Dong, Y., Chen, X., Li, J., 2010. Effects of plant residues and nitrogen forms on microbial biomass and mineral nitrogen of soil in the Loess Plateau. Shengtai Xuebao/ Acta Ecol. Sin.
  • 76. Wang, C., Zhou, J., Xia, Z., Liu, R., 2011. Effects of mixed plant residues from the Loess Plateau on microbial biomass carbon and nitrogen in soil. Shengtai Xuebao/ Acta Ecol. Sin.
  • 77. Wang, W., Xu, W., Wen, Z., Wang, D., Wang, S., Zhang, Z., Zhao, Y., Liu, X., 2019. Characteristics of Atmospheric Reactive Nitrogen Deposition in Nyingchi City. Sci. Rep. 9, 1–11. https://doi.org/10.1038/s41598–019–39855–2
  • 78. Wojciechowska, E., 2017. Potential and limits of landfill leachate treatment in a multi-stage subsurface flow constructed wetland – Evaluation of organics and nitrogen removal. Bioresour. Technol. 236, 146–154. https://doi.org/10.1016/j.biortech.2017.03.185
  • 79. Xu, Q., Renault, S., Yuan, Q., 2019. Phytodesalination of landfill leachate using Puccinellia nuttalliana and Typha latifolia. Int. J. Phytoremediation 21, 831–839. https://doi.org/10.1080/15226514.2019.1568383
  • 80. Xu, X., Wanek, W., Zhou, C., Richter, A., Song, M., Cao, G., Ouyang, H., Kuzyakov, Y., 2014. Nutrient limitation of alpine plants: Implications from leaf N:P stoichiometry and leaf δ15N. J. Plant Nutr. Soil Sci. https://doi.org/10.1002/jpln.201200061
  • 81. Yalçuk, A., Ugurlu, A., 2020. Treatment of landfill leachate with laboratory scale vertical flow constructed wetlands: plant growth modeling. Int. J. Phytoremediation 22, 157–166. https://doi.org/10.1080/15226514.2019.1652562
  • 82. Zhang, Y., Lv, T., Carvalho, P.N., Zhang, L., Arias, C.A., Chen, Z., Brix, H., 2017. Ibuprofen and iohexol removal in saturated constructed wetland mesocosms. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2016.05.077
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48fed965-81da-49f6-b48c-d1017915c629
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.