PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pietro Mengoli szeregi liczbowe prehistoria funkcji ζ Riemanna

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Pietro Mengoli and numerical series the prehistory of Riemann’s ζ function
Języki publikacji
PL
Abstrakty
EN
The article deals with the work of the 17th-century Italian mathematician. Rev. Pietro Mengoli (1625-1686), who was the forerunner of research on numerical series.The legacy of Mengoli, a scientist well-known and well respected in Italy, but almost altogether forgotten in the West, has never been thoroughly analyzed in Polish historical writing. Yet it was Mengoli who first posed a number of problems related to finding the sums of an infinite number of fractions. He solved most of those problems, but he failed in one case - in the case of the sum of the inverse of squares of successive natural numbers. For fundamental reasons, which had not been understood until several dozen years later, Mengoli was unable to find a compact expression for the sum of this series. He himself, with a humility rarely found in the history of science, admitted that this problem required a "richer intellect". This series turned out to be the first example of a fundamental function investigated later by Euler and Riemann, and called, in honour of the latter mathematician, the Riemann ζ (dzeta) function. This function constitutes the key to solving one of the greatest mathematical puzzles of all times - the distribution of prime numbers. Connected with this riddle is also the most important and most difficult of the hitherto unsolved problems of the famous list presented in 1900 by Hilbert at the 2nd International Mathematical Congress in Paris, the Riemann hypothesis. The generalizations of the series considered by Mengoli continue to be researched by mathematicians today. The aim of the article is to show, on the example of Mengoli’s achievements and failures, a general regularity: the solution of a given mathematical problem is the result of the subtle interplay between, on the one hand, the scientists’s knowledge, talent and effort, and, on the other, the level of general knowledge at a given time, which stems from the collective achievements of many previous generations of mathematicians.
Twórcy
autor
  • Obserwatorium Astronomiczne Uniwersytetu Jagiellońskiego
Bibliografia
  • 1 G. H. Hardy: Apologia matematyka. Tłum. M. Fedyszak. Warszawa 1997, s. 49.
  • 2 S. J. Patterson: An Introduction to the Theory of the Riemann Zeta-Function. New York, Cambridge University Press 1988, s. XI.
  • 3 C. F. Gauss: Disquisitiones arithmetical. Lipsӕ: (Lipsk) 1801.
  • 4 M. Agrawal, N. Kayal, N. Saxena: Primes in P. Indian Institute of Technology preprint, Kanpur 2002.
  • 5 L. Euler: Varice observationes circa series infinitas. „Commentarii” 1737, 1744.
  • 6 G.F.B. Riemann: Über die Anzahl der Primzahlen unter eine gegebener Grosse (O liczbie liczb pierwszych mniejszych niż zadana wielkość). „Monatsber. Akad. Berlin”, 1859, s. 671-680.
  • 7 B. Cipra: Prime Formula Weds Number Theory and Quantum Physics. „Science” 1996, vol. 274, s. 2014
  • 8 K. Sabbagh: Dr. Riemann’s Zeros: The Search for the – 1 million Solution to the Greatest Problem in Mathematics, Atlantic Books, 2002, s. 134-136.
  • 9 S. Weinberg: Dreams ofa Final Theory. New York 1992 Pantheon Books s. 211.
  • 10 G. E.E. Vacca: Sulle scoperte di Pietro Mengoli. „Atti dell’Accademia nazionale dei Lincei. Rendiconti”, ser. 5, 24.2 (Dec. 1915), 508-13.
  • 11 G. Fantuzzi: Notizie degle scrittori bolognesi. Bologna 1788, Stamperia di S. Tomasso d’Aquino.
  • 12 A.A.P. Juszkiewicz (red.): Historia matematyki do XXwieku. Tłum. S. Dobrzycki. Warszawa 19641. 1-3, s. 97.
  • 13 http://www.mathsoft.com/asolve/constant/table.html
  • 14 R.L. Graham, D.E. Knuth i O. Patashnik: Matematyka konkretna. Warszawa 1996, s. 341.
  • 15 Le prime ricerche di Piętro Mengoli: La Somma delle Serie [w:] Geometry and Complex Variables. Proceedings of an International Meeting on the Occasion of the IX Centennial of the University of Bologna, ed. by Salvatore Coen, 1991, s. 206.
  • 16 L. Euler : De summis serierum reciprocarum, „Commentarii” (1734-1735) 1740.
  • 17 F.W. Byron, R.W. Fuller: Matematyka w fizyce klasycznej i kwantowej. Tom 2. Tłum. A. Pindor, A. Szymacha. Warszawa 1974, s. 57, 71.
  • 18 R. Apéry: Irrationalité de ζ (2) et ζ (3). „Astérisque” 1979, t. 61, 11-13
  • 19 A. van der Poorten: A Proof that Euler Missed... Apéry’s Proof of the Irrationality of ζ(3). „The Mathematical Intelligencer” 1979, t. 1, s. 195-203.
  • 20 T. Rivoal: La fonction Zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs. „C. R. Acad. Sci.” 2000, t. 331, s. 267-270.
  • 21 K. Ball, T. Rivoal: Irrationalité d ’une infinité valeurs de la fonction zeta aux entiers impairs. „Invent. Math.” 2001, t. 146, s. 193-207.
  • 22 T. Rivoal: Irrationalité d ’au moins un des neuf nombres ζ (5), ζ (7), ..., ζ (21). Preprint 2001, http://xxx.lanl.gov/abs/math.NT/0104221/
  • 23 W. Zudilin: One of the Numbers ζ (5), ζ (7), ζ (9), ζ (11) Is Irrational. „Uspekhi Mat. Nauk” 2001, t. 56, 149-150.
  • 24 A.M. Legendre: Essai sur la théorie des nombres. Paris 1798
  • 25 P. Erdôs w wywiadzie dla P. Hoffmana. „Atlantic Monthly” listopad 1987, s. 74.
  • 26 D. Zagier: The first 50 million of prime numbers. „The Mathematical Intelligencer” 1977, t. 0, s. 7-19.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48fea1ab-4942-4e02-8200-3f279bf2dc3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.