PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of all-optical time-division multiplexing scheme with the help of microring resonator

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optical time-division multiplexing is a natural multiplexing technique leading to terabit/s transmission capacity for many services that will be found in near future optical telecommunication networks. In this paper we have conducted a theoretical study of all-optical time-division multiplexing switching using GaAs-AlGaAs based microring resonator together with performances characteristics. The proposed circuit is more compact, simple and will be helpful in designing all-optical telecommunication circuits in near future. Numerical simulation results confirming described methods are given in this paper.
Czasopismo
Rocznik
Strony
39--54
Opis fizyczny
Bibliogr., 53 poz., rys., wykr., tab.
Twórcy
autor
  • Department of Electronics and Instrumentation Engineering, National Institute of Technology, Agartala, Tripura, India
autor
  • Department of Physics, National Institute of Technology, Agartala, Tripura, India
Bibliografia
  • [1] FUKUCHI K., KASAMATSU T., MORIE M., OHHIRA R., ITO T., SEKIYA K., OGASAHARA D., ONO T., 10.92-Tb/s (273×40-Gb/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment, [In] Optical Fiber Communication Conference – Postdeadline, Anaheim, California, March 17, 2001, article PD24.
  • [2] BIGO S., FRIGNAC Y., CHARLET G., IDLER W., BORNE S., GROSS H., DISCHLER R., POEHLMANN W.,TRAN P., SIMONNEAU C., BAYART D., VEITH G., JOURDAN A., HAMAIDE J.-P., 10.2 Tbit/s(256×42.7 Gbit/s PDM/WDM) transmission over 100 km TeraLight™ fiber with 1.28 bit/s/Hz spectral efficiency, [In] Optical Fiber Communication Conference – Postdeadline, Anaheim, California, March 17, 2001, article PD25.
  • [3] GLESK I., SOLOKOFF J.P., PRUCNAL P.R., All-optical address recognition and self-routing in a 250 Gbit/s packet-switched network, Electronics Letters 30(16), 1994, pp. 1322–1323.
  • [4] YANQIAO XIE, SHIMING GAO, SAILING HE, Simultaneous all-optical, error-free time-division demultiplexing and NRZ-to-RZ format conversion using a silicon-on-insulator waveguide, 17th Opto-Electronics and Communications Conference (OECC), July 2–6, 2012, pp. 241–242.
  • [5] KUROSU T., TANIZAWA K., NAMIKI S., Clock distribution scheme using signal phase for channel identification in optical time division multiplexing, [In] Optical Fiber Communication Conference, Los Angeles, California United States, March 4–8, 2012, article OW1I.6.
  • [6] IBRAHIM T.A., VAN V., HO P.-T., All-optical time-division demultiplexing and spatial pulse routing with a GaAs/AlGaAs microring resonator, Optics Letters 27(10), 2002, pp. 803–805.
  • [7] ZHAN-QIANG HUI, JIAN-GUO ZHANG, Wavelength conversion, time demultiplexing and multicasting based on cross-phase modulation and four-wave mixing in dispersion-flattened highly nonlinear photonic crystal fiber, Journal of Optics 14(5), 2012, article 055402.
  • [8] ZHAN-QIANG HUI, JIAN-GUO ZHANG, JIA-MIN GONG, MENG LIANG, MEI-ZHI ZHANG, YI YANG, FENG-TAO HE, JI-HONG LIU, Demonstration of 40 Gbit/s all-optical return-to-zero to nonreturn-to-zero format conversion with wavelength conversion and dual-channel multicasting based on multiple cross-phase modulation in a highly nonlinear fiber, Optical Engineering 52(5), 2013, article 055002.
  • [9] MITCHELL M., SEGEV M., Self-trapping of incoherent white light, Nature 387, 1997, pp. 880–883.
  • [10] KARIM M.A., AWAL A.A.S., Optical Computing: An Introduction, Wiley, New York, 2003.
  • [11] GUOQIANG LI, LIREN LIU, LAN SHAO, YAOZU YIN, JIAWEN HUA, Parallel optical negabinary arithmetic based on logic operations, Applied Optics 36(5), 1997, pp. 1011–1016.
  • [12] ROY J.N., MUKHOPADHYAY S., A minimization scheme of optical space-variant logical operations in a combinational architecture, Optics Communications 119(5–6), 1995, pp. 499–504.
  • [13] GAYEN D.K., ROY J.N., PAL R.K., All-optical carry lookahead adder with the help of terahertz optical asymmetric demultiplexer, Optik – International Journal for Light and Electron Optics 123(1), 2012, pp. 40–45.
  • [14] SMITH S.D., JANOSSY I., MACKENZIE H.A., MATHEW J.G., REID J.J., TAGHIZADEH M.R., TOOLEY F.A., WALKER A.C., Nonlinear optical circuit elements as logic gates for optical computers: the first digital optical circuits, Optical Engineering 24(4), 1985, pp. 569–573.
  • [15] GAYEN D.K., BHATTACHRYYA A., CHATTOPADHYAY T., ROY J.N., Ultrafast all-optical half adder using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer, Journal of Lightwave Technology 30(21), 2012, pp. 3387–3393.
  • [16] GAYEN D.K., CHATTOPADHYAY T., PAL R.K., ROY J.N., All-optical prefix tree adder with the help of terahertz optical asymmetric demultiplexer, Chinese Optics Letters 9(6), 2011, article 062001.
  • [17] ROY J.N., GAYEN D.K., Integrated all-optical logic and arithmetic operations with the help of a TOAD-based interferometer device – alternative approach, Applied Optics 46(22), 2007, pp. 5304–5310.
  • [18] CHERRI A.K., Terahertz-optical-asymmetric-demultiplexer (TOAD)-based arithmetic units for ultra-fast optical information processing, Proceedings of SPIE 7671, 2010, article 76710N.
  • [19] ROY J.N., RAKSHIT J.K., Design of micro-ring resonator-based all-optical logic shifter, Optics Communications 312, 2014, pp. 73–79
  • [20] KARIM M.A., AWWAL A.A.S., CHERRI A.K., Polarization-encoded optical shadow-casting logic units: design, Applied Optics 26(14), 1987, pp. 2720–2725.
  • [21] ALAM M.S., KARIM M.A., Real-time optical arithmetic/logical processing, Journal of Parallel and Distributed Computing 17(3), 1993, pp. 251–258.
  • [22] SHUQUN ZHANG, KARIM M.A., A new impulse detector for switching median filters, IEEE Signal Processing Letters 9(11), 2002, pp. 360–363.
  • [23] CHATTOPADHYAY T., ROY J.N., Design of SOA-MZI based all-optical programmable logic device (PLD), Optics Communications 283(12), 2010, pp. 2506–2517.
  • [24] GUOQIANG LI, FENG QIAN, HAO RUAN, LIREN LIU, Compact parallel optical modified-signed-digitarithmetic-logic array processor with electron-trapping device, Applied Optics 38(23), 1999, pp. 5039–5045.
  • [25] HONGJIAN WANG, KAI SONG, Simulative method for the optical processor reconfiguration on a dynamically reconfigurable optical platform, Applied Optics 51(2), 2012, pp. 167–175.
  • [26] GAYEN D.K., ROY J.N., All-optical arithmetic unit with the help of terahertz-optical-asymmetric-demultiplexer-based tree architecture, Applied Optics 47(7), 2008, pp. 933–943.
  • [27] ROY J.N., MAITY G.K., GAYEN D.K., CHATTOPADHYAY T., Terahertz optical asymmetric demultiplexer based tree-net architecture for all-optical conversion scheme from binary to its other 2n radix based form, Chinese Optics Letters 6(7), 2008, pp. 536–540.
  • [28] ROY J.N., Mach–Zehnder interferometer-based tree architecture for all-optical logic and arithmetic operations, Optik – International Journal for Light and Electron Optics 120(7), 2009, pp. 318–324.
  • [29] VAN V., IBRAHIM T.A., RITTER K., ABSIL P.P., JOHNSON F.G., GROVER R., GOLDHAR J., HO P.-T., All optical nonlinear switching in GaAs–AlGaAs microring resonators, IEEE Photonics Technology Letters 14(1), 2002, pp. 74–76.
  • [30] RAKSHIT J.K., ROY J.N., CHATTOPADHYAY T., Design of micro-ring resonator based all-optical parity generator and checker circuit, Optics Communications 303, 2013, pp. 30–37.
  • [31] RAKSHIT J.K., CHATTOPADHYAY T., ROY J.N., All-optical clocked D flip flop using single micro-ring resonator, International Conference on Fiber Optics and Photonics, 2012, article WPo.29.
  • [32] LINSEN LI, JUNQIANG SUN, Theoretical investigation of phase-based all-optical logic gates based on AlGaAs microring resonators, Journal of Modern Optics 59(13), 2012, pp. 1149–1153.
  • [33] HEEBNER J.E., BOYD R.W., Enhanced all-optical switching by use of a nonlinear fiber ring resonator, Optics Letters 24(12), 1999, pp. 847–849.
  • [34] LINSEN LI, JUNQIANG SUN, Theoretical investigation of phase-based all-optical NOT, XOR and XNOR logic gates based on AlGaAs microring resonators, Journal of Modern Optics 59(9), 2012, pp. 809–813.
  • [35] LEI ZHANG, JIANFENG DING, YONGHUI TIAN, RUIQIANG JI, LIN YANG, HONGTAO CHEN, PING ZHOU, YANGYANG LU, WEIWEI ZHU, RUI MIN, Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations, Optics Express 20(11), 2012, pp. 11605–11614.
  • [36] RAKSHIT J.K., ROY J.N., CHATTOPADHYAY T., All-optical XOR/XNOR logic gate using micro-ring resonator, 5th International Conference on Computers and Devices for Communication (CODEC), Kolkata, India, December 17–19, 2012, pp. 1–4.
  • [37] OLSSON B-E., BLUMENTHAL D.J., WDM to OTDM multiplexing using an ultrafast all-optical wavelength converter, IEEE Photonics Technology Letters 13(9), 2001, pp. 1005–1007.
  • [38] HAMILTON S.A., ROBINSON B.S., MURPHY T.E., SAVAGE S.J., IPPEN E.P., 100 Gb/s optical time-division multiplexed networks, Journal of Lightwave Technology 20(12), 2002, pp. 2086–2100.
  • [39] ROY J.N., MAITI A.K., MUKHOPADHYAY S., Designing of an all-optical time division multiplexing scheme with the help of nonlinear material based tree-net architecture, Chinese Optics Letters 4(8), 2006, pp. 483–486.
  • [40] ZHAN-QIANG HUI, JIAN-GUO ZHANG, Design of polarity-preserved or polarity-inverted wavelength converters using cross-phase modulation in a highly nonlinear photonic crystal fiber with flat dispersion, Journal of Optics 14(6), 2012, article 065402.
  • [41] LIN S., ISHIKAWA Y., WADA K., Demonstration of optical computing logics based on binary decision diagram, Optics Express 20(2), 2012, pp. 1378–1384.
  • [42] VAN V., IBRAHIM T.A., ABSIL P.P., JOHNSON F.G., GROVER R., HO P.-T., Optical signal processing using nonlinear semiconductor microring resonators, IEEE Journal of Selected Topics in Quantum Electronics 8(3), 2002, pp. 705–713.
  • [43] RABUS D.G., HAMACHER M., MMI-coupled ring resonators in GaInAsP–InP, IEEE Photonics Technology Letters 13(8), 2001, pp. 812–814.
  • [44] RABUS D.G., HAMACHER M., HEIDRICH H., Resonance frequency tuning of a double ring resonator in GaInAsP/InP: experiment and simulation, Japanese Journal of Applied Physics, Part 1, 41(2B), 2002, pp. 1186–1189.
  • [45] CHUNPANG P., PIPHITHIRANKARN P., YUPAPIN P.P., An investigation of quantum–chaotic signals generation using a fiber ring resonator and an add/drop multiplexer, Optik – International Journal for Light and Electron Optics 121(8), 2010, pp. 765–769.
  • [46] RAKSHIT J.K., CHATTOPADHYAY T., ROY J.N., Design of ring resonator based all optical switch for logic and arithmetic operations – a theoretical study, Optik – International Journal for Light and Electron Optics 124(23), 2013, pp. 6048–6057.
  • [47] THONGMEE S., YUPAPIN P.P., All optical half adder/subtractor using dark-bright soliton conversion control, Procedia Engineering 8, 2011, pp. 217–222.
  • [48] PHONGSANAM P., TEEKA C., JOMTARAK R., MITATHA S., YUPAPIN P.P., All-optical logic AND and OR gates generated by dark–bright soliton conversion, Optik – International Journal for Light and Electron Optics 124(5), 2013, pp. 406–410.
  • [49] SAEUNG P., YUPAPIN P.P., Generalized analysis of multiple ring resonator filters: modeling by using graphical approach, Optik – International Journal for Light and Electron Optics 119(10), 2008, pp. 465–472.
  • [50] ZOIROS K.E., PAPADOPOULOS G., HOUBAVLIS T., KANELLOS G.T., Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac interferometer, Optics Communications 258(2), 2006, pp. 114–134.
  • [51] HOUBAVLIS T., ZOIROS K.E., KANELLOS G., TSEKREKOS C., Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach–Zehnder interferometer, Optics Communications 232(1–6), 2004, pp. 179–199.
  • [52] TARAPHDAR C., CHATTOPADHYAY T., ROY J.N., Mach–Zehnder interferometer-based all-optical reversible logic gate, Optics and Laser Technology 42(2), 2010, pp. 249–259.
  • [53] VARDAKAS J.S., ZOIROS K.E., Performance investigation of all-optical clock recovery circuit based on Fabry–Pérot filter and semiconductor optical amplifier assisted Sagnac switch, Optical Engineering 46(8), 2007, article 085005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48f89b47-95a8-4567-99b6-906829aeba2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.