PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Switching controller synthesis for discrete-time switched linear systems with average dwell time

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses weighted L2 gain performance switching controller design of discrete-time switched linear systems with average dwell time (ADT) scheme. Two kinds of methods, so called linearizing change-of-variables based method and controller variable elimination method, are considered for the output-feedback control with a supervisor enforcing a reset rule at each switching instant are considered respectively. Furthermore, some comparison between these two methods are also given.
Rocznik
Strony
5--22
Opis fizyczny
Bibliogr. 30 poz., rys., wykr., wzory
Twórcy
autor
  • The College of Automation Science and Technology, South China University of Technology, Guangzhou 510641, China
autor
  • The College of Automation Science and Technology, South China University of Technology, Guangzhou 510641, China
  • The College of Automation Science and Technology, South China University of Technology, Guangzhou 510641, China.
Bibliografia
  • [1] D. Liberzon and A. S. Morse: Basic problems in stability and design of switched systems, IEEE Control Systems Magazine, 19(5) (1999), 59–70.
  • [2] R. De Carlo, M. S. Branicky, S. Pettersson, and B. Lennartson: Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE, 88(7) (2000), 1069–1082.
  • [3] T. Kaczorek: Analysis and comparison of the stability of discrete-time and continuous-time linear systems. Archives of Control Sciences, 26(4) (2016), 551–563.
  • [4] Z. Sun and S. S. Ge: Switched linear systems: control and design, Springer, London, 2005.
  • [5] D. Liberzon: Switching in Systems and Control, Birkhauser, Boston, 2003.
  • [6] E. K. Boukas: Stochastic Switching Systems: Analysis and Design, W. S. Levine, Ed. Birkhauser, 2006.
  • [7] D. Krokavec and A. Filasová: Stabilization of discrete-time LTI positive systems, Archives of Control Sciences, 27(4) (2017), 575–594.
  • [8] D. Liberzon, J. P. Hespanha and A.S. Morse: Stability of switched systems: a lie-algebraic condition, Syst. Control Lett., 37(3) (1999), 117–122.
  • [9] J. C. Geromel and G. S. Deaecto: Switched state feedback control for continuous-time uncertain systems, Automatica, 45 (2009), 593–597.
  • [10] Z. Fei, S. Shi, Z. Wang, et al.: Quasi-time-dependent output control for discrete-time switched system with mode-dependent average dwell time, IEEE Transactions on Automatic Control, 63(8) (2018), 2647-2653.
  • [11] J. Zhao and D. J. Hill: On stability L2 gain and H1 control for switched systems, Automatica, 44 (2008), 1220–1232.
  • [12] G. S. Deaecto, J. C. Geromel and J. Daafouz: Dynamic output feedback H1 control of switched linear systems, Automatica, 47 (2011), 1713–1720.
  • [13] C. Cai and S. Mijanovic: LMI-based stability analysis of linear hybrid systems with application to switched control of a refrigeration process, Asian Journal of Control, 14(1) (2012), 12–22.
  • [14] P. Riedinger: A Switched LQ Regulator Design in Continuous Time, IEEE Transactions on Automatic Control, 59(5) (2014), 1322–1328.
  • [15] J. P. Hespanha and A.S. Morse: Stability of switched systems with average dwell-time, in Proc. 38th. IEEE Conf. Dec. Contr. (1999), 2655–2660.
  • [16] G. Zhai, B. Hu, K. Yasuda and A. N. Michel: Disturbance attenuation properties of time-controlled switched systems, J. Franklin Institute, 338 (2001), 765–779.
  • [17] C. Yuan and F. Wu: Hybrid control for switched linear systems with average dwell time, IEEE Trans. Automat. Control, 60(1) (2015), 240–245.
  • [18] W. Xie: Design of switched linear control systems based on Youla parameterization with average dwell time, International Journal of Systems Science, 50(1) (2019), 203–215.
  • [19] T. Sun, D. Zhou, Y. Zhu, et al.: Stability, L2-Gain Analysis, and Parity Space-Based Fault Detection for Discrete-Time Switched Systems Under Dwell-Time Switching, in IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018.
  • [20] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan: Linear Matrix Inequalities in System and Control Theory, Philadelphia, PA: SIAM. 2004.
  • [21] C. Duan and F. Wu: Analysis and control of switched linear systems via modified Lyapunov–Metzler inequalities, Int. J. Robust Nonlinear Control, 24 (2014), 276–294.
  • [22] R. Wang, J. Zhao, G. M. Dimirovski, and G. P. Liu: Output feedback control for uncertain linear systems with faulty actuators based on a switching method, Int. J. Robust Non. Control, 19 (2009),1295–1312.
  • [23] B. Lu, F. Wu and S. Kim: Switching LPV control of an F-16 aircraft via controller state reset, IEEE Trans. Contr. Syst. Techno., 14(2) (2006), 267–277.
  • [24] J. P. Hespanha, D. Liberzon and A. R. Teel: Lyapunov conditions for input-to-state stability for impulsive systems, Automatica, 44(11) (2008), 2735–2744.
  • [25] L. Hetel, J. Daafouz, S. Tarbouriech and C. Prieur: Stabilization of linear impulsive systems through a nearly-periodic reset, Nonlinear Analysis: Hybrid Systems, 7(1) (2013), 4–15.
  • [26] D. Nešić, L. Zaccarian and A. R. Teel: Stability properties of reset systems, Automatica, 44 (2008), 2019–2026.
  • [27] F. Fichera, C. Prieur, S. Tarbouriech and L. Zaccarian: Using Luenberger observers and dwell-time logic for feedback hybrid loops in continuous-time control systems, Int. J. Robust Non. Contr., 23(10) (2013), 1065–1086.
  • [28] C. Scherer, P. Gahinet and M. Chilali: Multiobjective output-feedback control via LMI optimization, IEEE Trans. Automat. Contr. 42(7), (1997), 896–911.
  • [29] P. Gahinet, A. Nemirovski, A.J. Laub and M. Chilali: LMI control toolbox for use with matlab, Use’s guide. Natick, MA, USA: The Math Works Inc. 1995.
  • [30] F. Blanchini, S. Miani and F. Mesquine: A Separation Principle for Linear Switching Systems and Parametrization of All Stabilizing Controllers, IEEE Trans. Automat. Control, 54(2) (2009), 279–292.
Uwagi
EN
1. This work was supported by National Nature Science Foundation of China (NSFC) under the grant 61973125 and 61803161, Natural Science Foundation of Guangdong Province under the grant 2017A030313385 & 2018A030310371, YangFan Innovative and Entrepreneurial Research Team Project of Guangdong Province under the grant 2016YT03G125, Science and Technology Planning Project of Guangdong Province under the grant 2018B010108001, 2017B090914001 & 2017B030306017, Science and Technology Program of Guangzhou under the grant 201904010441.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48f3664a-9fb9-4e20-a570-7430f650a5c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.