PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crustal electrical structure across the Tangra-Yumco tectonic belt revealed by magnetotelluric data: new insights on the east-west extension mechanism of the Tibetan plateau

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geologic evolution of the Tibetan plateau is characterized by crustal extension and horizontal movement in the post-collision stage, during which, approximate north–south (N–S) trending tectonic belts typically represented by Tangra-Yumco rift are developed. The Tangra-Yumco tectonic belt is an ideal object to investigate the deep structure and mechanism of the crustal extension. The magnetotelluric (MT) method is effective in probing crustal structures, especially for high-conductivity bodies. A MT profile of east–west direction with dense stations has been carried out across the Tangra-Yumco tectonic belt. Resistivity models independently derived from two-dimensional and three-dimensional inversions provided more detailed geophysical constraints on the mechanism of crustal extension and deformation. A significant conductor with estimated melt fraction as 3.0–7.5% in mid-lower crust was revealed under the N–S tectonic belt, where the asthenospheric upwelling through the slab-tearing window might have induced partial melting of the lithospheric mantle and lower crust. Combined with previous studies, the upward migration of hot mantle materials and the expansion of the lower crust should be the primary mechanism driving east–west (E–W) extension of the brittle upper crust with high resistivity above the depth of 30 km. According to lateral electrical discontinuity in the upper crust, we inferred that there might exist three normal faults with the reference of topography and the trend of extension of the existing faults. The expansion and deformation of the conductor might have pulled the brittle upper crust and cause significant E–W extension, leading to the formation of the approximate N–S trending rift and normal faults.
Czasopismo
Rocznik
Strony
783--794
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
  • Geophysical Exploration Team of Sichuan Bureau of Geology and Mineral Exploration, Chengdu 610072, China
autor
  • College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
  • Sichuan Bureau of Geology and Mineral Exploration, Chengdu 610081, China
autor
  • Geophysical Exploration Team of Sichuan Bureau of Geology and Mineral Exploration, Chengdu 610072, China
autor
  • College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
autor
  • College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
  • College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
Bibliografia
  • 1. Bai DH, Unsworth MJ, Meju MA, Ma XB, Teng JW, Kong XR, Sun Y, Sun J, Wang LF, Jiang CS, Zhao CP, Xiao PF, Liu M (2010) Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat Geosci 3:358–362. https://doi.org/10.1038/ngeo830
  • 2. Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742. https://doi.org/10.1038/414738a
  • 3. Becken M, Ritter O, Burkhardt H (2008) Mode separation of magnetotelluric responses in three-dimensional environments. Geophys J Int 172:67–86. https://doi.org/10.1111/j.1365-246X.2007.03612.x
  • 4. Booker JR (2014) The magnetotelluric phase tensor: a critical review. Surv Geophys 35:7–40. https://doi.org/10.1007/s10712-013-9234-2
  • 5. Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158:457–469. https://doi.org/10.1111/j.1365-246X.2004.02281.x
  • 6. Chen Y, Li W, Yuan XH, Badal J, Teng JW (2015) Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements. Earth Planet Sc Lett 413:13–24. https://doi.org/10.1016/j.epsl.2014.12.041
  • 7. Chen JY, Gaillard F, Villaros A, Yang XS, Laumonier M, Jolivet L, Unsworth M, Hashim L, Scaillet B, Richard G (2018) Melting conditions in the modern Tibetan crust since the Miocene. Nat Commun 9:3515. https://doi.org/10.1038/s41467-018-05934-7
  • 8. Chen YF, Ding L, Li ZY, Laskowski AK, Li JX, Baral U, Qasim M, Yue YH (2020) Provenance analysis of Cretaceous peripheral foreland basin in central Tibet: Implications to precise timing on the initial Lhasa-Qiangtang collision. Tectonophysics 775:228311. https://doi.org/10.1016/j.tecto.2019.228311
  • 9. DeCelles PG, Kapp P, Gehrels GE, Ding L (2014) Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision. Tectonics 33:824–849. https://doi.org/10.1002/2014TC003522
  • 10. Egbert GD (1997) Robust multiple-station magnetotelluric data processing. Geophys J Int 130:475–496. https://doi.org/10.1111/j.1365-246X.1997.tb05663.x
  • 11. Egbert GD, Kelbert A (2012) Computational recipes for electromagnetic inverse problems. Geophys J Int 189:251–267. https://doi.org/10.1111/j.1365-246X.2011.05347.x
  • 12. Farquharson CG, Oldenburg DW (2004) A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophys J Int 156:411–425. https://doi.org/10.1111/j.1365-246X.2004.02190.x
  • 13. Francheteau J, Jaupart C, Shen XJ, Kang WH, Lee DL, Bai JC, Wei HP, Deng HY (1984) High heat flow in southern Tibet. Nature 307:32–36. https://doi.org/10.1038/307032a0
  • 14. Guo ZF, Wilson M (2019) Late Oligocene–early Miocene transformation of postcollisional magmatism in Tibet. Geology 47:776–780. https://doi.org/10.1130/G46147.1
  • 15. Hou ZQ, Cook NJ (2009) Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue. Ore Geol Rev 36:2–24. https://doi.org/10.1016/j.oregeorev.2009.05.001
  • 16. Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS, Duan LF (2015) A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology 43:247–250. https://doi.org/10.1130/G36362.1
  • 17. Hou ZQ, Xu B, Zheng YC, Zheng HW, Zhang HR (2021) Mantle flow: The deep mechanism of large-scale growth in Tibetan Plateau. Sci Bull 66:2671–2690. https://doi.org/10.1360/TB-2020-0817
  • 18. Jiang GZ, Gao P, Rao S, Zhang LY, Tang XY, Huang F, Zhao P, Pang ZH, He LJ, Hu SB, Wang JY (2016) Compilation of heat flow data in the continental area of China. Chin J Geophys Chin 59:2892–2910. https://doi.org/10.6038/cjg20160815
  • 19. Kapp P, Taylor M, Stockli D, Ding L (2008) Development of active low-angle normal fault systems during orogenic collapse: insight from Tibet. Geology 36:7–10. https://doi.org/10.1130/G24054A.1
  • 20. Kapp P, DeCelles PG (2019) Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Am J Sci 319:159–254. https://doi.org/10.2475/03.2019.01
  • 21. Kelbert A, Meqbel N, Egbert GD, Tandon K (2014) ModEM: a modular system for inversion of electromagnetic geophysical data. Comput Geosci 66:40–53. https://doi.org/10.1016/j.cageo.2014.01.010
  • 22. Liang XF, Chen Y, Tian XB, Chen YSJ, Ni J, Gallegos A, Klemperer SL, Wang ML, Xu T, Sun CQ, Si SK, Lan HQ, Teng JW (2016) 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography. Earth Planet Sc Lett 443:162–175. https://doi.org/10.1016/j.epsl.2016.03.029
  • 23. Li JT, Song XD (2018) Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet. Proc Natl Acad Sci U S A 115:8296–8300. https://doi.org/10.1073/pnas.1717258115
  • 24. Molnar P, England P, Martinod J (1993) Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev Geophys 31:357–396. https://doi.org/10.1029/93RG02030
  • 25. Murphy MA, Saylor JE, Ding L (2009) Late Miocene topographic inversion in southwest Tibet based on integrated paleoelevation reconstructions and structural history. Earth Planet Sc Lett 282:1–9. https://doi.org/10.1016/j.epsl.2009.01.006
  • 26. Pan GT, Wang LQ, Zhang WP, Wang BD (2013) Tectonic map and description of Qinghai-Tibet Plateau and its adjacent areas. Geological Publishing House, Beijing
  • 27. Pang YJ, Zhang H, Gerya TV, Liao J, Cheng HH, Shi YL (2018) The mechanism and dynamics of N-S rifting in southern Tibet: insight from 3-D thermomechanical modeling. J Geophys Res-Solid Earth 123:859–877. https://doi.org/10.1002/2017JB014011
  • 28. Rippe D, Unsworth M (2010) Quantifying crustal flow in Tibet with magnetotelluric data. Phys Earth Planet Inter 179:107–121. https://doi.org/10.1016/j.pepi.2010.01.009
  • 29. Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66:174–187. https://doi.org/10.1190/1.1444893
  • 30. Rosenberg CL, Handy MR (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. J Metamorph Geol 23:19–28. https://doi.org/10.1111/j.1525-1314.2005.00555.x
  • 31. Sheng Y, Jin S, Comeau MJ, Dong H, Zhang LT, Lei LL, Li BC, Wei WB, Ye GF, Lu ZW (2021) Lithospheric structure near the Northern Xainza-Dinggye rift, Tibetan Plateau-implications for rheology and tectonic dynamics. J Geophys Res-Solid Earth 126:e2020JB021442
  • 32. Styron RH, Taylor MH, Murphy MA (2011) Oblique convergence, arc-parallel extension, and the role of strike-slip faulting in the High Himalaya. Geosphere 7:582–596. https://doi.org/10.1130/GES00606.1
  • 33. Ten Grotenhuis SM, Drury MR, Spiers CJ, Peach CJ (2005) Melt distribution in olivine rocks based on electrical conductivity measurements. J Geophys Res-Solid Earth 110:B12201. https://doi.org/10.1029/2004JB003462
  • 34. Unsworth MJ, Jones AG, Wei W, Marquis G, Gokarn SG, Spratt JE (2005) Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature 438:78–81. https://doi.org/10.1038/nature04154
  • 35. Wang G, Wei WB, Ye GF, Jin S, Jing JE, Zhang LT, Dong H, Xie CL, Omisore BO, Guo ZQ (2017) 3-D electrical structure across the Yadong-Gulu rift revealed by magnetotelluric data: new insights on the extension of the upper crust and the geometry of the underthrusting Indian lithospheric slab in southern Tibet. Earth Planet Sc Lett 474:172–179. https://doi.org/10.1016/j.epsl.2017.06.027
  • 36. Wei WB, Jin S, Ye GF, Deng M, Jing JE, Unsworth M, Jones AG (2010) Conductivity structure and rheological property of lithosphere in Southern Tibet inferred from super-broadband magnetotelluric sounding. Sci China-Earth Sci 53:189–202. https://doi.org/10.1007/s11430-010-0001-7
  • 37. Williams H, Turner S, Kelley S, Harris N (2001) Age and composition of dikes in southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology 29:339–342. https://doi.org/10.1130/0091-7613(2001)029%3c0339:AACODI%3e2.0.CO;2
  • 38. Ye GF, Unsworth M, Wei WB, Jin S, Liu ZL (2019) The lithospheric structure of the solonker suture zone and adjacent areas: crustal anisotropy revealed by a high-resolution magnetotelluric study. J Geophys Res-Solid Earth 124:1142–1163. https://doi.org/10.1029/2018JB015719
  • 39. Yin A, Harrison TM (2000) Geologic evolution of the himalayan-tibetan orogen. Annu Rev Earth Planet Sci 28:211–280. https://doi.org/10.1146/annurev.earth.28.1.211
  • 40. Yin A (2000) Mode of cenozoic east-west extension in Tibet suggesting a commonorigin of rifts in Asia during the Indo-Asian collision. J Geophys Res-Solid Earth 105:21745–21759. https://doi.org/10.1029/2000jb900168
  • 41. Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev 76:1–131. https://doi.org/10.1016/j.earscirev.2005.05.004
  • 42. Zhao ZD, Mo XX, Nomade S, Paul RR, Zhou S, Dong GC, Wang LL, Zhu DC, Liao ZL (2006) Post-collisional ultrapotassic rocks in Lhasa Block, Tibetan Plateau: Spatial and temporal distribution and it’s implications. Acta Petrol Sin 22:787–794
  • 43. Zhao JM, Yuan XH, Liu HB, Kumar P, Pei SP, Kind R, Zhang ZJ, Teng JW, Ding L, Gao X, Xu Q, Wang W (2010) The boundary between the Indian and Asian tectonic plates below Tibet. Proc Natl Acad Sci U S A 107:11229–11233. https://doi.org/10.1073/pnas.1001921107
  • 44. Zheng YC, Hou ZQ, Fu Q, Zhu DC, Liang W, Xu PY (2016) Mantle inputs to Himalayan anatexis: insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves. Lithos 264:125–140. https://doi.org/10.1016/j.lithos.2016.08.019
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48f0f4ab-4591-47dd-a60b-56e2066e4e2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.