PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance Evaluation of Sweet Sorghum Juice and Sugarcane Molasses for Ethanol Production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sweet sorghum juice and traditional ethanol substrate i.e. sugarcane molasses were used for ethanol production in this work. At the end of the fermentation process, the sweet sorghum juice yielded more ethanol with higher ethanol concentration compared to sugarcane molasses in all experiments. The sweet sorghum juice had higher cell viability at high ethanol concentrations and minimum sugar concentration at the end of the fermentation process. The ethanol concentration and yield were 8.9% w/v and 0.45 g/g for sweet sorghum in 80 h and 6.5% w/v and 0.37 g/g for sugarcane molasses in 60 h, respectively. The findings on the physical properties of sweet sorghum juice revealed that it has better physical properties compared to sugarcane molasses, resulting to enhanced performance of sweet sorghum juice for ethanol production.
Słowa kluczowe
Rocznik
Strony
13--18
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr., wz.
Twórcy
  • University of Isfahan, College of Engineering, Chemical Engineering Department, Isfahan, Iran
autor
  • University of Isfahan, Department of Biology, College of Biology, Isfahan, Iran
autor
  • Tarbiat Modares University, Biotechnology Group, Faculty of Chemical Engineering, Tehran, Iran
autor
  • University of Isfahan, Department of Biology, College of Biology, Isfahan, Iran
autor
  • University of Isfahan, Department of Biology, College of Biology, Isfahan, Iran
Bibliografia
  • 1. Chuck-Hernandez, C., Perez-Carrillo, E. & Serna-Saldivar, S.O. (2009). Production of bioethanol from steam-flaked sorghum and maize. J. Cereal Sci. 50(1), 131–137. DOI: 10.1016/j.jcs.2009.04.004.
  • 2. Yamamoto, M., Iakovlev, M., Bankar, S., Tunc, M.S. & van Heiningen, A. (2014). Enzymatic hydrolysis of hardwood and softwood harvest residue fibers released by sulfur dioxide–ethanol–water fractionation. Bioresour. Technol. 167, 530–538. DOI: 10.1016/j.biortech.2014.06.054.
  • 3. Cotana, F., Cavalaglio, G., Gelosia, M., Coccia, V., Petrozzi, A. & Nicolini, A. (2014). Effect of Double-Step Steam Explosion Pretreatment in Bioethanol Production from Softwood. Appl. Biochem. Biotechnol. 174(1), 156–167. DOI: 10.1007/s12010-014-1046-4.
  • 4. Biswas, R., Uellendahl, H. & Ahring, B.K. (2014). Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Biomass Bioenerg. 61, 104–113. DOI: 10.1016/j.biombioe.2013.11.027.
  • 5. Ahi, M., Azin, M., Shojaosadati, S.A., Vasheghani-Farahani, E. & Nosrati, M. (2013). Optimization of Sugarcane Bagasse Hydrolysis by Microwave-Assisted Pretreatment for Bioethanol Production. Chem. Eng. Technol. 36(11), 1997–2005. DOI: 10.1002/ceat.201300233.
  • 6. Zhu, J.-Q., Qin, L., Li, B.-Z. & Yuan, Y.-J. (2014). Simultaneous saccharification and co-fermentation of aqueous ammonia pretreated corn stover with an engineered Saccharomyces cerevisiae SyBE005. Bioresour. Technol. 169, 9–18. DOI: 10.1016/j.biortech.2014.06.085.
  • 7. Sasaki, K., Tsuge, Y., Sasaki, D., Hasunuma, T., Sakamoto, T., Sakihama, Y., Ogino, C. & Kondo, A. (2014). Optimized membrane process to increase hemicellulosic ethanol production from pretreated rice straw by recombinant xylose-fermenting Saccharomyces cerevisiae. Bioresour. Technol. 169, 380–386. DOI: 10.1016/j.biortech.2014.06.101.
  • 8. Balat, M. & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 86(11), 2273–2282. DOI: 10.1016/j.apenergy.2009.03.015.
  • 9. Zhang, C., Xie, G., Li, S., Ge, L. & He, T. (2010). The productive potentials of sweet sorghum ethanol in China. Appl. Energy 87(7), 2360–2368. DOI: 10.1016/j.apenergy.2009.12.017.
  • 10. Zhou, A. & Thomson, E. (2009). The development of biofuels in Asia. Appl. Energy 86 (Supplement 1), S11–S20. DOI: 10.1016/j.apenergy.2009.04.028.
  • 11. Yan, J. & Lin, T. (2009). Biofuels in Asia. Appl. Energy 86(Supplement 1), S1-S10. DOI: 10.1016/j.apenergy.2009.07.004.
  • 12. Gnansounou, E., Dauriat, A. & Wyman, C.E. (2005). Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour. Technol. 96(9), 985–1002. DOI: 10.1016/j.biortech.2004.09.015.
  • 13. Almodares, A. & Hadi, M.R. (2009). Production of bioethanol from sweet sorghum: A review. Afr. J. Agr. Res. 4(9), 772–780.
  • 14. Sánchez, Ó.J. & Cardona, C.A. (2008). Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99(13), 5270–5295. DOI: 10.1016/j.biortech.2007.11.013.
  • 15. Jacques, K.A., Lyons, T.P. & Kelsall, D.R. (1999). The alcohol textbook : a reference for the beverage, fuel and industrial alcohol industries (3rd ed). Nottingham: Nottingham University Press.
  • 16. Cutz, L. & Santana, D. (2014). Techno-economic analysis of integrating sweet sorghum into sugar mills: The Central American case. Biomass Bioenerg. 68, 195–214. DOI: 10.1016/j.biombioe.2014.06.011.
  • 17. Naik, N., Jagadeesh, K. & Alagawadi, A. (2008). Microbial decolorization of spentwash: a review. Indian J. Microbiol. 48(1), 41–48. DOI: 10.1007/s12088-008-0005-6.
  • 18. Sangave, P.C., Gogate, P.R. & Pandit, A.B. (2007). Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment. Chemosphere 68(1), 32–41. DOI: 10.1016/j.chemosphere.2006.12.053.
  • 19. Tao, F., Miao, J.Y., Shi, G.Y. & Zhang, K.C. (2005). Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition. Process Biochem. 40(1), 183–187. DOI: 10.1016/j.procbio.2003.11.054.
  • 20. Praj Industries (2004). Analytical Methods for Cane Feedstock Based Fermentation and Distillation Process 4th ed. Pune, India: Praj Matrix – The Innovation Center.
  • 21. Roukas, T. (1996). Ethanol production from non-sterilized beet molasses by free and immobilized Saccharomyces cerevisiae cells using fed-batch culture. J. Food Eng. 27(1), 87–96. DOI: 10.1016/0260-8774(94)00076-L.
  • 22. Mobini-Dehkordi, M., Nahvi, I., Zarkesh-Esfahani, H., Ghaedi, K., Tavassoli, M. & Akada, R. (2008). Isolation of a novel mutant strain of Saccharomyces cerevisiae by an ethyl methane sulfonate-induced mutagenesis approach as a high producer of bioethanol. J. Biosci. Bioeng. 105(4), 403–408. DOI: 10.1263/jbb.105.403.
  • 23. Bernhardt, H.W. (1998). Centrifugal clarification of molasses. In 72th Annual Congress of the South African Sugar Technologists’ Association (Proc S Afr Sug Technol Ass) (pp. 278–284). South Africa: South African Sugar Technologists’ Association.
  • 24. Inamdar, S. (1994). Effect of pretreatment of molasses and posttreatment of fermented broth in industrial production of ethanol. Appl. Biochem. Biotechnol. 45–46(1), 181–187. DOI: 10.1007/BF02941797.
  • 25. Win, S.S., Impoolsup, A. & Noomhorm, A. (1996). Growth kinetics of Saccharomyces cerevisiae in batch and fed-batch cultivation using sugarcane molasses and glucose syrup from cassava starch. J. Ind. Microbiol. 16(2), 117–123. DOI: 10.1007/BF01570071.
  • 26. Wu, X., Staggenborg, S., Propheter, J.L., Rooney, W.L., Yu, J. & Wang, D. (2010). Features of sweet sorghum juice and their performance in ethanol fermentation. Ind. Crop. Prod. 31(1), 164–170. DOI: 10.1016/j.indcrop.2009.10.006.
  • 27. Laluce, C., Palmieri, M.C. & Dacruz, R.C.L. (1991). Growth and fermentation characteristics of new selected strains of Saccharomyces at high-temperatures and high cell densities. Biotechnol. Bioeng. 37(6), 528–536. DOI: 10.1002/bit.260370606.
  • 28. Pratt, P.L., Bryce, J.H. & Stewart, G.G. (2003). The effects of osmotic pressure and ethanol on yeast viability and morphology. J. Inst. Brew. 109(3), 218–228. DOI: 10.1002/j.2050-0416.2003.tb00162.x.
  • 29. Miahipour, A., Bonakdarpour, B. & Bahrami, A. (2004). Considerations on the sugarcane molasses clarification for the ethanol production process (In Persian). In 9th Iranian National Conference of Chemical Engineering (23–25 November 2004) (pp. 1560–1568). Tehran, Iran: Iran University of Science & Technology.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48f0c667-1d91-4773-8b95-37c12170ffb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.