Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Friction Stir Process (FSP) was employed to develop Cupro-Nickel/Zirconium Carbide (Cu-Ni/ZrC) surface composites. Five different groove widths ranging from 0 to 1.4 mm were made in CuNi alloy plate to incorporate different ZrC volume fraction (0, 6, 12, 18 and 24 %) to study its influence on the structure and properties of Cu-Ni/ZrC composite. Processing was performed at a Tool Rotational Speed (TRS) of 1300 rpm, Tool Traverse Speed (TTS) of 40 mm/min with a constant axial load of 6 KN. The study is performed to analyse the influence of ZrC particles and the volume fraction of ZrC particles on the microstructural evolution, microhardness, mechanical properties, and tribological characteristics of the Cu-Ni/ZrC composite. The fracture and worn-out surfaces are analysed using Field Emission Scanning Electron Microscope (FESEM) to identify the fracture and wear mechanisms. The results demonstrated a simultaneous increase in microhardness and tensile strength of the developed composite because of grain refinement, uniform dispersion, and excellent bonding of ZrC with the matrix. Besides, the wear resistance increases with increase in volume fraction of ZrC particles in the composite. The surface morphology analysis revealed that the wear mechanism transits from severe wear regime to mild wear regime with increase in volume fraction of ZrC particles.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
565--574
Opis fizyczny
Bibliogr. 41 poz., fot., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Sri Ramakrishna Engineering College, Coimbatore
autor
- Department of Metallurgical Engineering, PSG College of Technology, Coimbatore
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore
autor
- Department of Mechanical Engineering, Sri Ramakrishna Engineering College, Coimbatore
Bibliografia
- [1] J. R. Davis, ASM International, Copper and Copper Alloys, ASM Speciality Handbook, 2001.
- [2] W. C. Stewart, F. L. Laque, Corrosion Characteristics of Iron Modified 90:10 Cu-Ni alloy, National Association of Corrosion Engineers, Texas (1952).
- [3] A. N. Attia, Surface metal matrix composites, Mater. Des. 22, 451-457 (2001).
- [4] S. Romankov, Y. Hayasaka, I. V. Shchetinin, J. M. Yoon, S. V. Komarov, Fabrication of Cu-SiC surface composite under ball collisions, Appl. Surf. Sci. 257, 5032-5036 (2011).
- [5] J. Zhuang, Y. Liu, Z. Cao, Y. Li, The Influence of Technological Process on Dry Sliding Wear Behaviour of Titanium Carbide Reinforcement Copper Matrix Composites, Mater. Trans. 51, 2311-2317 (2010).
- [6] C. S. Ramesh, R. Noor Ahmed, M. A. Mujeebu, M. Z. Abdullah, Development and performance analysis of novel cast copper-SiC-Gr hybrid composites, Mater. Des. 30, 1957-1965 (2009).
- [7] K. Rajkumar, S. Aravindan, Tribological performance of microwave sintered copper TiC graphite hybrid composites, Tribol. Int. 44, 347-358 (2011).
- [8] H. O. Pierson, O. Hugh, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps., Handb. Refract. Carbides Nitrides. 362, 1996.
- [9] S. Tomida, K. Nakata, S. Saji, T. Kubo, Formation of metal matrix composite layer on aluminum alloy with TiC-Cu powder by laser surface alloying process, Surf. Coatings Technol. 142-144, 585-589 (2001).
- [10] L. Bourithis, A. Milonas, G. D. Papadimitriou, Plasma transferred arc surface alloying of a construction steel to produce a metal matrix composite tool steel with TiC as reinforcing particles, Surf. Coatings Technol. 165, 286-295 (2003).
- [11] R. S. Mishra, Z. Y. Ma, I. Charit, Friction stir processing: A novel technique for fabrication of surface composite, Mater. Sci. Eng. A. 341, 307-310 (2003).
- [12] Y. X. Gan, D. Solomon, M. Reinbolt, Friction stir processing of particle reinforced composite materials, Materials (Basel). 3, 329-350 (2010).
- [13] J. Iwaszko, K. Kudła, K. Fila, M. Strzelecka, The Effect of Friction Stir Processing (FSP) on the Microstructure and Properties of AM60 Magnesium Alloy, Arch. Metall. Mater. 61, 1555-1560 (2016).
- [14] Z. Y. Ma, R. S. Mishra, M. W. Mahoney, R. Grimes, High strain rate superplasticity in friction stir processed Al-Mg-Zr alloy, Mater. Sci. Eng. A. 351, 148-153 (2003).
- [15] C. M. Rejil, I. Dinaharan, S. J. Vijay, N. Murugan, Microstructure and sliding wear behavior of AA6360/(TiC+B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate, Mater. Sci. Eng. A. 552, 336-344 (2012).
- [16] A. Dolatkhah, P. Golbabaei, M. K. Besharati Givi, F. Molaiekiya, Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing, Mater. Des. 37, 458-464 (2012).
- [17] N. Saini, C. Pandey, S. Thapliyal, D. K. Dwivedi, Mechanical Properties and Wear Behavior of Zn and MoS2 Reinforced Surface Composite Al-Si Alloys Using Friction Stir Processing, Silicon 10, 1979-1990 (2018).
- [18] R. Sathiskumar, N. Murugan, I. Dinaharan, S. J. Vijay, Role of friction stir processing parameters on microstructure and microhardness of boron carbide particulate reinforced copper surface composites, Sadhana - Acad. Proc. Eng. Sci. 38, 1433-1450 (2013).
- [19] V. J. Arulmoni, R. S. Mishra, Experimental Investigations on Friction Stir Processed Copper and Enhancement of Mechanical Properties of the Composite Material, Int. Res. J. Sustain. Sci. Eng. 2, 557-563 (2014).
- [20] W. Y. Gan, Z. Zhou, H. Zhang, T. Peng, Evolution of microstructure and hardness of aluminum after friction stir processing, Trans. Nonferrous Met. Soc. China (English Ed. 24, 975-981 (2014).
- [21] M. Dadashpour, R. Yeşildal, A. Mostafapour, V. Rezazade, Effect of heat treatment and number of passes on the microstructure and mechanical properties of friction stir processed AZ91C magnesium alloy, J. Mech. Sci. Technol. 30, 667-672 (2016).
- [22] G. S. Priyadharshini, R. Subramanian, N. Murugan, R. Sathiskumar, Influence of friction stir processing parameters on surface modified 90Cu-10Ni composites, Mater. Manuf. Process. 32, 1416-1427 (2017).
- [23] P. Cavaliere, Effect of friction stir processing on the fatigue properties of a Zr-modified 2014 aluminium alloy, Mater. Charact. 57, 100-104 (2006).
- [24] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31, Mater. Sci. Eng. A. 433, 50-54 (2006).
- [25] M. Barmouz, M. K. Besharati Givi, J. Seyfi, On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior, Mater. Charact. 62, 108-117 (2011).
- [26] Wei Wang, Qing-yu Shi, Peng Liu, Hong-ke Li, Ting Li, A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing, Journal of materials processing technology 209, 2099-2103 (2009).
- [27] Peng Liua, Qing-yu Shi, Yuan-bin Zhang, Microstructural evaluation and corrosion properties of aluminium matrix surface composite adding Al-based amorphous fabricated by friction stir processing, Composites: Part B 52,137-143 (2013).
- [28] C. J. Lee, J. C. Huang, P. J. Hsieh, Mg based nano-composites fabricated by friction stir processing, Scr. Mater. 54, 1415-1420 (2006).
- [29] R. Sathiskumar, N. Murugan, I. Dinaharan, S. J. Vijay, Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing, Mater. Charact. 84, 16-27 (2013).
- [30] I. Dinaharan, N. Murugan, S. Parameswaran, Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites, Mater. Sci. Eng. A. 528, 5733-5740 (2011).
- [31] M. Gupta, T. S. Srivatsan, Interrelationship between matrix microhardness and ultimate tensile strength of discontinuous particulate-reinforced aluminum alloy composites, Mater. Lett. 51, 255-261 (2001).
- [32] I. Dinaharan, N. Murugan, S. Parameswaran, Developing an empirical relationship to predict the influence of process parameters on tensile strength of friction stir welded AA6061/0-10 wt% ZrB2 In Situ composite, Trans. Indian Inst. Met. 65, 159-170 (2012).
- [33] M. Al-Hajri, A. Melendez, R. Woods, T. S. Srivatsan, Influence of heat treatment on tensile response of an oxide dispersion strengthened copper, J. Alloys Compd. 290, 290-297 (1999).
- [34] T. Srivatsan, N. Narendra, J. Troxell, Tensile deformation and fracture behavior of an oxide dispersion strengthened copper alloy, Mater. Des. 21, 191-198 (2000).
- [35] Chandan Pandey, Nitin Saini, Manas Mohan Mahapatra, Pradeep Kumar, Study of the fracture surface morphology of impact and tensile tested cast and forged (C&F) Grade 91 steel at room temperature for different heat treatment regimes, Engineering Failure Analysis 71, 131-147 (2016).
- [36] Chandan Pandey, M. M. Mahapatra, Pradeep Kumar, N. Saini, Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel, Journal of Nuclear Materials. 498, 176-186 (2017).
- [37] Chandan Pandey, M. M. Mahapatra, Pradeep Kumar, Prakash Kumar, N. Saini, J. G. Thakare, S. Kumar, Study on effect of double austenitization treatment on fracture morphology tensile tested nuclear grade P92 steel, Engineering Failure Analysis. 96, 158-167 (2019).
- [38] N. Murugan, B. Ashok Kumar, Prediction of tensile strength of friction stir welded stir cast AA6061-T6/AlNp composite, Mater.Des. 51, 998-1007 (2013).
- [39] E. R. I. Mahmoud, M. Takahashi, T. Shibayanagi, K. Ikeuchi, Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing, Wear. 268, 1111-1121 (2010).
- [40] S. H. Aldajah, O. O. Ajayi, G. R. Fenske, S. David, Effect of friction stir processing on the tribological performance of high carbon steel, Wear. 267, 350-355 (2009).
- [41] S. Bajwa, W. M. Rainforth, W. E. Lee, Sliding wear behaviour of SiC-Al2O3 nanocomposites, Wear. 259, 553-561 (2005)
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48e57b29-c4bf-4f79-81fd-1f47d17c9fae