PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigation of thermal performance in liquid cooling serpentine mini-channel heat sink with various inlet/outlet positions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to investigate and optimize the thermal dissipation of a constant heat flux source by conducting a numerical analysis of four serpentine mini-channel heat sink configurations, each characterized by different inlet and outlet arrangements for the cooling fluid. The cooling system under study consists of an upper part made of ABS copolymer resin, incorporating the fluid inlets and outlets (water), and a lower part made of aluminum, which contains the serpentine mini-channel heat sink. The analyzed configurations included four cases: First: a single inlet and a single outlet, Second: two inlets and one outlet, Third: one inlet and two outlets, and Fourth: a variation of the third model with reversed inlet and outlet positions. Numerical simulations, performed using the finite volume method, cover a Reynolds number range from 200 to 600. The analysis focuses on flow behavior, temperature distributions, pressure drop, thermal resistance, the average Nusselt number and the performance evaluation factor (PEF). The results indicate that the configurations with two inlets and one outlet (Case 2) and the reversed inlet/outlet configuration (Case 4) significantly enhance cooling compared to the other configurations. However, the two-inlet, one-outlet case also results in a higher pressure drop. At a Reynolds number of 600, Case 2 achieves the best thermal performance with an average Nusselt number of 20.79 and a minimum thermal resistance of 0.228K/W, while Case 3 exhibits the lowest efficiency. These findings help identify optimal configurations for cooling high heat flux electronic components.
Rocznik
Strony
18--37
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Research Centre in Industrial Technologies (CRTI), Cheraga, 16014, Algeria
  • Eco-Materials, Chemical Processes and Sustainable Development Laboratory, Biskra, Algeria
  • Eco-Materials, Chemical Processes and Sustainable Development Laboratory, Biskra, Algeria
  • Abbas LaghrourUniversity of Khenchela, Algeria
  • Lab. of Materials and Energy Engineering, LGEM, University of Mohamed KhiderBiskra, Algeria
  • ITheMM - Institut de Thermique, Mécanique, Matériaux. Université de Reims Champagne-Ardenne, France
  • School of Engineering and Sustainable Development, De Montfort University, Leicester, U.K.
Bibliografia
  • 1. Imran, A. A., Mahmoud, N. S., Jaffal, H. M., “Numerical and experimental investigation of heat transfer in liquid cooling serpentine mini-channel heat sink with different new configuration models,” Thermal Science and Engineering Progress, Vol. 6, pp. 128-139, 2018. https://doi.org/10.1016/j.tsep.2018.03.011.
  • 2. Tariq, H.A., Anwar, M., Malik, A., "Numerical investigations of mini-channel heat sink for microprocessor cooling: effect of slab thickness". Arab J Sci Eng 45, pp.5169-5177, 2020. https://doi.org/10.1007/s13369-020-04370-4
  • 3. Ghadhban, F. N., Hayder M. J., "Numerical and experimental thermohydraulic performance evaluation of multi-minichannel heat sinks considering channel structure modification," International Communications in Heat and Mass Transfer, Vol. 145, Part A, 106847, 2023, https://doi.org/10.1016/j.icheatmasstransfer.2023.106847.
  • 4. Chadi, K., Belghar, N., Lachi, M., Driss, Z., Bencid, A. "Numerical study of the optimization of the thermal and flow characteristics of a collector design of microchannels with two inlets and outlets, containing a nanofluid and a water-based fluid". Numerical Heat Transfer, Part A: Applications, pp.1-15,2024.https://doi.org/10.1080/10407782.2024.2357586
  • 5. Mahmoud, N. S., Jaffal, S. M., Imran, A. A., "Performance evaluation of serpentine and multi-channel heat sinks based on energy and exergy analyses," Applied Thermal Engineering, Vol. 186, 116475, 2021.https://doi.org/10.1016/j.applthermaleng.2020.116475.
  • 6. Gorzin, M., Ranjbar, A.A., Hosseini, M.J., "Experimental study on serpentine minichannel heat sink: Effect of rib existence and distance," International Journal of Thermal Sciences, Vol. 173, 107397,2022. https://doi.org/10.1016/j.ijthermalsci.2021.107397
  • 7. Mustafa, A.J., Ihsan A.G., " Performance analysis of minichannel heat sink with oblong cavities and diverse pin fin configurations."Heat transfer, Vol. 54, Issue1, pp. 854-882, 2025 https://doi.org/10.1002/htj.23198
  • 8. Afshari, F., Muratçobanoğlu, B., "Thermal analysis of Fe3O4/water nanofluid in spiral and serpentine mini channels by using experimental and theoretical models". Int. J. Environ. Sci. Technol. 20, pp.2037-2052, 2023.https://doi.org/10.1007/s13762-022-04119-6
  • 9. Ataei, M., Sadegh Moghanlou, F., Noorzadeh, S., Vajdi, M., Shahedi Asl, M., "Heat transfer and flow characteristics of hybrid Al2O3/TiO2–water nanofluid in a minichannel heat sink". Heat Mass Transfer 56, pp. 2757-2767, 2020. https://doi.org/10.1007/s00231-020-02896-9
  • 10. Saleem, S., Heidarshenas, B., "An investigation on exergy in a wavy wall microchannel heat sink by using various nanoparticles in fluid flow: two-phase numerical study". J Therm Anal Calorim 145, pp.1599-1610, 2021. https://doi.org/10.1007/s10973-021-10771-w
  • 11. Mahmood, H., Freegah, B., Muneer EL-Deen Faik, A., Qasim, S., "Optimizing minichannel heat sink design: A combined numerical and experimental analysis of Inlet/Outlet configurations and pin fin enhancements" Heat Transfer, 2024. https://doi.org/10.1002/htj.23267
  • 12. Xin C., Huan-ling L., Xiao-dong S., Han S., Gongnan X.,"Thermal performance of double serpentine minichannel heat sinks: Effects of inlet-outlet arrangements and through-holes.", International Journal of Heat and Mass Transfer, Vol. 153, 119575, 2020, https://doi.org/10.1016/j.ijheatmasstransfer.2020.119575.
  • 13. Al-Hasani, H. M., Freegah, B.," Influence of fluid inlet–outlet on hydrothermal evaluation for different serpentine mini-channel heat sink configurations", Heat Transfer, Vol. 51, Issue 8, pp. 7635-7654, 2022.https://doi.org/10.1002/htj.22659
  • 14. Al-Hasani, H. M., Freegah, B., "Influence of secondary flow angle and pin fin on hydro-thermal evaluation of double outlet serpentine mini-channel heat sink", Results in Engineering, Vol. 16, 100670, 2022.https://doi.org/10.1016/j.rineng.2022.100670.
  • 15. Chadi, K., Bencid, A., "Design effect of a mini-channel heat sink using additive manufacturing". Sustainable Polymer & Energy 3, 10004, 2025.https://doi.org/10.70322/spe.2025.10004
  • 16. Moraveji, M. K., Ardehali, R. M., Ijam, A., “CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink.”, International Communications in Heat and Mass Transfer. Vol. 40, pp.58-66, 2013.https://doi.org/10.1016/j.icheatmasstransfer.2012.10.021
  • 17. Ghadhban, F. N., Jaffal, H. M., " Numerical investigation on heat transfer and fluid flow in a multi-minichannel heat sink: Effect of channel configurations," Results in Engineering, Vol. 17,100839,2023.https://doi.org/10.1016/j.rineng.2022.100839.
  • 18. Al-Neama, A. F., Khatir, Z., Kapur, N., Summers, J., Thompson, H. M., "An experimental and numerical investigation of chevron fin structures in serpentine mini-channel heat sinks", Int. J. Heat Mass Transf. 120, 1213-1228, 2018.https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.092
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48e4ef73-d1e0-4868-855c-c5cc040701ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.