PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of heat requirements in greenhouses for Kirşehir and Kahramanmaraş provinces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Greenhouses are artificial growing environments that can provide the growth factors required for the production of crop plants out of season. In these structures, the low temperature values that occur during the year cause losses in yield and quality because they are not suitable for plant cultivation. In order to be able to grow out of season in these periods, the amount of heat required by the plants should be provided with additional heating. In the study carried out to determine the amount of heat needed in greenhouses throughout the year for the provinces of Kırşehir and Kahramanmaraş, which are located in two different regions of Turkey, the heat requirements that will arise in the presence or absence of a thermal screen in greenhouses with the same characteristics were calculated. In the calculations, the most common tomato plant grown in both provinces has been considered. Accordingly, if the greenhouse temperature is kept at a constant temperature of 18°C throughout the year, the heat energy requirements that emerge during the year are 469.90 kWh m.-2 for Kırşehir and 254.71 kWh m.-2 for Kahramanmaraş. In the case of using a thermal screen, these values were calculated as 401.53 kWh m.-2 for Kırşehir province and 218.91 kWh m.-2 for Kahramanmaraş province. As a result of the study, the amount of heat energy needed in greenhouses in provinces decreased with the use of thermal screens. It has been determined that this situation is extremely important in terms of reducing the share of heating in production costs and the amount of carbon dioxide released into the atmosphere by fossil energy sources used for heating purposes.
Słowa kluczowe
Rocznik
Tom
Strony
5--20
Opis fizyczny
Bibliogr. 29 poz., tab., wykr.
Twórcy
autor
  • Kırşehir Ahi Evran University, Faculty of Agriculture, Department of Biosystems Engineering, 40100-Kırşehir, Turkey
autor
  • Kahramanmaraş Sütçü İmam University, Faculty of Agriculture, Department of Biosystems Engineering, 46100-Kahramanmaraş, Turkey
  • Kahramanmaraş Sütçü İmam University, Faculty of Agriculture, Department of Biosystems Engineering, 46100-Kahramanmaraş, Turkey
Bibliografia
  • 1. Anonymous 2021a: Jeotermal seracılık, fizibilite raporu ve yatırımcı rehberi. https://www.tarimorman.gov.tr/SGB/TARYAT/Belgeler/Projeler/jeotermal%20ser ac%C4%B1l%C4%B1k%20fizibilite%20raporu%20ve%20yat%C4%B1r%C4%B1 mc%C4%B1%20rehberi.pdf (Date: 06.10.2021).
  • 2. Anonymous 2021b: Yakıt fiyatları. http://www.tesisat.com.tr/yayin/yakitfiyatlari/(Date: 06.10.2021).
  • 3. Anonymous 2021c: Kırşehir Valiliği. http://www.kirsehir.gov.tr/cografya (Date: 06.10.2021).
  • 4. Anonymous 2021d: Kahramanmaraş Büyükşehir Belediyesi. https://kahramanmaras.bel.tr/kesfedin/kahramanmarasin-cografyasi (Date: 06.10.2021).
  • 5. Bakker J.C. 1995: Greenhouse climate control: Constraints and limitations, Acta Horticulturae, 399: 25‐37.
  • 6. Baptista F.J., Bailey B.J., Meneses J.F. 2012: Effect of nocturnal ventilation on the occurrence of Botrytis cinerea in Mediterranean unheated tomato greenhouses, Crop. Prot., , 32, 144-149.
  • 7. Baytorun A.N., Gügercin Ö. 2015: Increasing the energy efficiency in greenhouses. Çukurova University Journal of the Faculty of Engineering and Architecture, 30(2): 125-136.
  • 8. Baytorun A.N., Akyüz A., Çaylı A., Üstün S. 2019: Investigation of TR63 region climate conditions in terms of greenhouse. Mustafa Kemal University Journal of Agricultural Sciences, 24(Special Issue) :91-100.
  • 9. Baytorun A.N., Önder D., Gügercin Ö. 2016: Seraların ısıtılmasında kullanılan fosil ve jeotermal enerji kaynaklarının karşılaştırılması. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 4(10): 832-839.
  • 10. Boyacı S. 2018: Determination of heat requirements and comparison of energy sources used in heating in greenhouses of Kırşehir and Antalya provinces. KSU J. Agric Nat, 21(6): 976-986.
  • 11. Boyacı S. 2021: Biyosistem Mühendisliği I, “Biyogazın sera ısıtmasında kullanılabilirliğinin araştırılması.”. Akademisyen Yayınevi, ISBN 978-625-7401- 20-3.
  • 12. Boyacı S., Akyüz A., Baytorun A.N., Çaylı A. 2016: Determination of greenhouse agriculture potential of the Kırşehir province. Nevşehir Bilim ve Teknoloji Dergisi, 5(2): 142-157.
  • 13. Giuliano V., Teitel M., Pardossi A., Minuto A., Tinivella F., Schettini E. 2010: Sustainable Greenhouse Systems. Sustainable Agriculture. ISBN: 978-1-60876-269-9. Nova Science Publishers, Inc.
  • 14. Kendirli B., Çakmak B. 2010: Using of renewable energy sources in greenhouse heating. Ankara Üniversitesi Çevre Bilimleri Dergisi,; 2(1): 95-103.
  • 15. Kim HK., Kang G.C., Moon J.P., Lee T.S., Oh S.S. 2018: Estimation of thermal performance and heat loss in plastic greenhouses with and without thermal curtains. Energies, 11, 578.
  • 16. Le Quillec S., Brajeul E., Lesourd D., Loda D. 2005: Thermal screen evaluation in soilless tomato crop under glasshouse. Acta Hortic., 691: 709-716.
  • 17. Ozgener O., Hepbasli A. 2005: Performance analysis of a solar-assisted groundsource heat pump system for greenhouse heating: An experimental study. Build. Environ,. 40: 1040-1050.
  • 18. Park B.S., Kang T.H., Han C.S. 2015: Analysis of heating characteristics using aluminum multi-layer curtain for protected horticulture greenhouses. J. of Biosystems Eng., 40(3): 193-200.
  • 19. Sandal E.K., Karademir N. 2015: Recreation activities based on thermal tourism in Ilıca (Kahramanmaraş) springs. Türk Coğrafya Dergisi, 64: 39‐50.
  • 20. Santamouris M.I. 1993: Active solar agricultural greenhouses. The state of art. Solar Energy, 14: 19-32.
  • 21. Shakir S.M., Farhan A.A. 2019: Movable thermal screen for saving energy inside the greenhouse. Association of Arab Universities Journal of Engineering Sciences 26(1): 106-112.
  • 22. Shen Y., Wei R., Xu L. 2018: Energy consumption prediction of a greenhouse and optimization of daily average temperature. Energies, 11(65): 1-17.
  • 23. Tadj N., Bartzanas T., Fidaros D., Draoui B., Kittas C. 2010: Influence of heatıing system on greenhouse microclımate distribution. American Society of Agricultural and Biological Engineers, 53(1): 225-238.
  • 24. Tamimi E., Kacira M. 2013: Analysis of climate uniformity in a naturally ventilated greenhouse equipped with high-pressure fogging system using computational fluid dynamics. Acta Hortic., 1008, 177-184.
  • 25. Tekinel O., Baytorun A. 1990: Seracılıkta yeni teknolojiler. Türkiye 5. Seracılık Sempozyumu, 17-19 Ekim 1990, İzmir, (s.11-21).
  • 26. TUIK, 2021a: Turkish Statistical Institute. “Greenhouse area”. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (Date: 06.10.2021).
  • 27. TUIK, 2021b: Turkish Statistical Institute. “Greenhouse vegetables”. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (Date: 06.10.2021).
  • 28. von Elsner B., Briassoulis D., Waaijenberg D., Mistriotis A., von Zabeltitz C., Gratraud J., Russo G., Suay-Cortes R., 2000: Review of structural and functional characteristics of greenhouses in European Union countries: Part I, design requirements. Journal of Agricultural Engineering Research, 75: 1-16.
  • 29. Yağcıoğlu A., 1999: Sera Mekanizasyonu. İzmir: E.Ü. Ziraat Fakültesi Yayınları.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48e198cf-3912-4bd2-8edf-e4dd98af6ebb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.