Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Epoxy resin (EP) has been widely used in many fields due to its excellent physical and chemical properties. However, its inherent flammability limits its application in some fields, and the development of efficient and environmentally friendly new flame retardants has become a research hotspot. In recent years, researchers have been committed to developing new flame retardants to improve the flame retardant properties of EP. The development of synergistic flame retardant systems, combined with the advantages of various flame retardants, has become a research trend. In this paper, the application progress of three kinds of new flame retardants in EP, including nano-materials, organic materials, and inorganic materials, is summarized. Their synthesis methods, structural design, and application prospects are compared, and a summary and prospect are given.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
28--40
Opis fizyczny
Bibliogr. 81 poz., rys., tab., wykr., wz.
Twórcy
autor
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology Beijing, PR China
autor
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology Beijing, PR China
autor
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology Beijing, PR China
autor
- State Key Laboratory of Coal Mine Disaster Prevention and Control, Key Laboratory of Gas and Fire Control for Coal Mines, China University of Mining and Technology, China
- Zhejiang Zhongtian Dongfang Fluorosilicon Materials Group, China
autor
- Guangdong Advanced Carbon Materials Co., Ltd, China
Bibliografia
- 1. Guo, X., Li, X., Hua, Y., Sun, J., Li, H., Gu, X. & Zhang, S. (2025). A novel phosphoramidate-based eco-friendly flame retardant for epoxy resins: Enhanced mechanical properties and fire safety. Polym. Degrad. Stab., 233, 111172. DOI: 10.1016/j. polymdegradstab.2025.111172.
- 2. Qi, Y., Bao, D., Ma, S., Huan, X., Zhang, D., Zhou, G., Gao, C., Hou, X. & Zhang, Y. (2024). Increase of bridge length by ingenious grafting of ester chains, imparting epoxy resins superb thermal, smoke suppression, gas-phase flame retardancy, and mechanical properties. Chem. Eng. J., 500, 157356. DOI: 10.1016/j.cej.2024.157356.
- 3. Zhong, Z., Huo, Y., An, Y., Liu, W. & Dou, Y. (2024). Bionic octopus tentacle structure-inspired engineering of HPP@PBA nanotubes: Towards mechanically reinforced epoxy nanocomposites with outstanding flame retardancy and smoke suppression. Eur. Polym. J., 221, 113510. DOI: 10.1016/j. eurpolymj.2024.113510.
- 4.Yang, J.-X., Sun, Y., Song, W.-M. & Liu, Y. (2024). A novel phosphorus/boron-containing flame retardant for improving the flame retardancy of ramie fiber reinforced epoxy composites. Constr. Build. Mater., 451, 138814. DOI: 10.1016/j. conbuildmat.2024.138814.
- 5. Huan, X., Hou, Z., Ma, S., Xu, Q., Qi, Y., Bao, D., Hou, X., Du, H., Zhang, Y. & Wen, Z. (2025). Flame retardation of epoxy resin with P-N flame retardant based on DOPS/triazine-trione groups. Polym. Bull., 82 (2), 455–477. DOI: 10.1007/s00289-024-05535-z.
- 6. Jiang, G., Ye, G., Feng, Z., Qi, L., Wang, C., Xing, W., Gui, Z., Song, L. & Hu, Y. (2025). Linear polydichlorophosphazene and Ti3C2Tx MXene nanohybrids: Synthesis and application to epoxy resin to improve the fire safety and mechanical properties. J. Colloid Interface Sci., 679, 141–151. DOI: 10.1016/j.jcis.2024.09.229.
- 7. Cheng, C., Zhu, Z., Wang, M., Sun, H., Li, J., Jiao, R. & Li, A. (2024). Enhanced flame retardancy and thermal insulation of epoxy resins composites incorporated with ammonium polyphosphate and ionic liquids loaded CuO-ZnO hollow spheres. Colloids Surf. Physicochem. Eng. Asp., 703, 135388. DOI: 10.1016/j.colsurfa.2024.135388.
- 8. Pan, Y.-T., Zhang, Z. & Yang, R. (2020). The rise of MOFs and their derivatives for flame retardant polymeric materials: A critical review. Compos. Part B Eng., 199, 108265. DOI: 10.1016/j.compositesb.2020.108265.
- 9. Han, Z., Song, X., Chen, Z., Pan, Y.-T., Lai, X., Wang, D.-Y. & Yang, R. (2024). Half etching of ZIF-67 towards open hollow nanostructure with boosted absorption ability for toxic smoke and fume in epoxy composites. Sustain. Mater. Technol., 41, e01024. DOI: 10.1016/j.susmat.2024.e01024.
- 10. Hou, Y., Hu, W., Gui, Z. & Hu, Y. (2017). A novel Co-(II)–based metal-organic framework with phosphorus-containing structure: Build for enhancing fire safety of epoxy. Compos. Sci. Technol., 152, 231–242. DOI: 10.1016/j.compscitech.2017.08.032.
- 11. Zhang, J., Li, Z., Qi, X., Zhang, W. & Wang, D.-Y. (2020). Size tailored bimetallic metal-organic framework (MOF) on graphene oxide with sandwich-like structure as functional nano-hybrids for improving fire safety of epoxy. Compos. Part B Eng., 188, 107881. DOI: 10.1016/j.compositesb.2020.107881.
- 12. Zhang, J., Li, Z., Zhang, L., Yang, Y. & Wang, D. (2020). Green Synthesis of Biomass Phytic Acid-Functionalized UiO-66-NH2 Hierarchical Hybrids toward Fire Safety of Epoxy Resin. ACS Sustain. Chem. Eng., 8 (2), 994–1003. DOI: 10.1021/acssuschemeng.9b05658.
- 13. Ma, S., Hou, Y., Xiao, Y., Chu, F., Cai, T., Hu, W. & Hu, Y. (2020). Metal-organic framework@polyaniline nanoarchitecture for improved fire safety and mechanical performance of epoxy resin. Mater. Chem. Phys., 247, 122875. DOI: 10.1016/j. matchemphys.2020.122875.
- 14. Yin, L., Gong, K., Pan, H., Qian, X., Shi, C., Qian, L. & Zhou, K. (2022). Novel design of MOFs-based hierarchical nanoarchitecture: Towards reducing fire hazards of epoxy resin. Compos. Part Appl. Sci. Manuf., 158, 106957. DOI: 10.1016/j. compositesa.2022.106957.
- 15. Wang, X., Wu, T., Hong, J., Dai, J., Lu, Z., Yang, C., Yuan, C. & Dai, L. (2021). Organophosphorus modified hollow bimetallic organic frameworks: Effective adsorption and catalytic charring of pyrolytic volatiles. Chem. Eng. J., 421, 129697. DOI: 10.1016/j.cej.2021.129697.
- 16. Yu, S., Cheng, C., Li, K., Wang, J., Wang, Z., Zhou, H., Wang, W., Zhang, Y. & Quan, Y. (2023). Fire-safe epoxy composite realized by MXenes based nanostructure with vertically arrayed MOFs derived from interfacial assembly strategy. Chem. Eng. J., 465, 143039. DOI: 10.1016/j.cej.2023.143039.
- 17. Zhang, J., Li, Z., Shao, Z.-B., Zhang, L. & Wang, D.-Y. (2020). Hierarchically tailored hybrids via interfacial-engineering of self-assembled UiO-66 and prussian blue analogue: Novel strategy to impart epoxy high-efficient fire retardancy and smoke suppression. Chem. Eng. J., 400, 125942. DOI: 10.1016/j.cej.2020.125942.
- 18. Chen, C., Wang, B., Xiao, G., Cao, M., Zhong, F., Yang, Z., Zhou, J., Wang, M. & Zou, R. (2023). Tri-source integrated adenosine triphosphate loaded BN in synergy with Cu-MOF to improve the fire safety of epoxy resin. Constr. Build. Mater., 394, 132258. DOI: 10.1016/j.conbuildmat.2023.132258.
- 19. Han, Z., Zhang, W., Song, X., Vahabi, H., Pan, Y.-T., Zhang, W. & Yang, R. (2023). Fast char formation induced by POSS confining Co-MOF hollow prisms in epoxy composites with mitigated heat and smoke hazards. Chem. Eng. J., 474, 145682. DOI: 10.1016/j.cej.2023.145682.
- 20. Mu, X., Wang, D., Pan, Y., Cai, W., Song, L. & Hu, Y. (2019). A facile approach to prepare phosphorus and nitrogen containing macromolecular covalent organic nanosheets for enhancing flame retardancy and mechanical property of epoxy resin. Compos. Part B Eng., 164, 390–399. DOI: 10.1016/j. compositesb.2018.12.036.
- 21. Xiao, Y., Jin, Z., He, L., Ma, S., Wang, C., Mu, X. & Song, L. (2020). Synthesis of a novel graphene conjugated covalent organic framework nanohybrid for enhancing the flame retardancy and mechanical properties of epoxy resins through synergistic effect. Compos. Part B Eng., 182, 107616. DOI: 10.1016/j.compositesb.2019.107616.
- 22. Xiao, Y., Ma, C., Jin, Z., Wang, C., Wang, J., Wang, H., Mu, X., Song, L. & Hu, Y. (2021). Functional covalent organic framework illuminate rapid and efficient capture of Cu (II) and reutilization to reduce fire hazards of epoxy resin. Sep. Purif. Technol., 259, 118119. DOI: 10.1016/j.seppur.2020.118119.
- 23. Sun, X., Pan, Y.-T., Wang, W. & Yang, R. (2024). Surface modification of MOFs towards flame retardant polymer composites. RSC Appl. Interfaces, 2 (1), 14–24. DOI: 10.1039/d4lf00252k.
- 24. Wang, R., Zhang, X., Yuan, M., Wang, D.-Y., Zhang, J. & Pan, Y.-T. (2024). Fire retardancy of epoxy composites: A comparative investigation on the influence of porous structure and transition metal of metal-organic framework. Compos. Commun., 51, 102087. DOI: 10.1016/j.coco.2024.102087.
- 25. Huang, G., Pan, Y.-T., Liu, L., Song, P. & Yang, R. (2025). Metal-organic frameworks and their derivatives for sustainable flame-retardant polymeric materials. Adv. Nanocomposites, 2, 1–14. DOI: 10.1016/j.adna.2024.10.001.
- 26. Liu, P., Wang, X., Huang, J. & Jiang, X. (2024). Halogen-free epoxy flame retardant & promoter with diimidazole skeleton improves overall properties of epoxy resins. Chem. Eng. J., 498, 155408. DOI: 10.1016/j.cej.2024.155408.
- 27. Song, K., Pan, Y.-T., Zhang, J., Song, P., He, J., Wang, D.-Y. & Yang, R. (2023). Metal–Organic Frameworks–Based Flame-Retardant System for Epoxy Resin: A Review and Prospect. Chem. Eng. J., 468, 143653. DOI: 10.1016/j.cej.2023.143653.
- 28. Hu, J., Pan, Y.-T., Zhou, K., Song, P. & Yang, R. (2024). A new way to improve the fire safety of polyurethane composites with the assistance of metal–organic frameworks. RSC Appl. Polym., 2 (6), 996–1012. DOI: 10.1039/d4lp00257a.
- 29. Elashker, A., Eldakhakhny, A. M. & Mokhtar, M. (2024). Recent development of metal-organic frameworks as a novel flame-retardant in polymeric applications. 12th Int. Conf. Chem. Environ. Eng. ICEE 2024 May 21 2024 - May 23 2024, 2830 (1), Egyptian Ministry of Defense. DOI: 10.1088/1742-6596/2830/1/012020
- 30. Song, X., Hou, B., Han, Z., Pan, Y.-T., Geng, Z., Haurie Ibarra, L. & Yang, R. (2023). Dual nucleation sites induced by ZIF-67 towards mismatch of polyphosphazene hollow sub-micron polyhedrons and nanospheres in flame retardant epoxy matrix. Chem. Eng. J., 470, 144278. DOI: 10.1016/j.cej.2023.144278.
- 31. Li, Q., Han, Z., Song, X., Pan, Y.-T., Geng, Z., Vahabi, H., Realinho, V. & Yang, R. (2024). Enhancing char formation of flame retardant epoxy composites: Onigiri-like ZIF-67 modification with carboxymethyl β-cyclodextrin crosslinking. Carbohydr. Polym., 333, 121980. DOI: 10.1016/j.carbpol.2024.121980.
- 32. Cao, J., Chen, S., Han, Z., Pan, Y.-T., Lin, Y., Wang, W. & Yang, R. (2024). Covalent metal–organic porous polymer on ZIF-67 realize anti-UV and highly stressed flame retardant epoxy composites. Chem. Eng. J., 501, 157758. DOI: 10.1016/j. cej.2024.157758.
- 33. Zhang, J., Zhang, X., Wang, R., Wang, W., Zhao, H., Yang, S., Dong, Z., Wang, D.-Y. & Pan, Y.-T. (2024). Cyclodextrin-based host-guest hierarchical fire retardants: Synthesis and novel strategy to endow polylactic acid fire retardancy and UV resistance. Carbohydr. Polym., 341, 122313. DOI: 10.1016/j. carbpol.2024.122313.
- 34. Li, Q., Song, X., Pan, Y.-T., Sun, J., Bifulco, A. & Yang, R. (2024). Dual function of carboxymethyl cellulose scaffold: A one-stone-two-birds strategy to prepare double-layer hollow ZIF-67 derivates for flame retardant epoxy composites. J. Colloid Interface Sci., 674, 445–458. DOI: 10.1016/j.jcis.2024.06.189.
- 35. Bi, X., Song, K., Zhang, Z., Lin, T., Pan, Y.-T., Fu, W., Song, P., He, J. & Yang, R. (2024). Joint Exfoliation of MXene by Dimensional Mismatched SiC/ZIF-67 Toward Multifunctional Flame Retardant Thermoplastic Polyurethane. Small, 20 (43). DOI: 10.1002/smll.202403375.
- 36. Song, X., Li, Q., Han, Z., Hou, B., Pan, Y.-T., Geng, Z., Zhang, J., Haurie Ibarra, L. & Yang, R. (2024). Synchronous modification of ZIF-67 with cyclomatrix polyphosphazene coating for efficient flame retardancy and mechanical reinforcement of epoxy resin. J. Colloid Interface Sci., 667, 223–236. DOI: 10.1016/j.jcis.2024.04.088.
- 37. Xiao, F., Shao, W., Gao, X., Shi, Y., Liu, Y., Yuan, B. & Li, K. (2024). A versatile ionic liquid enables epoxy resin with excellent fire safety and mechanical properties but ultra-low loading. Eur. Polym. J., 219, 113420. DOI: 10.1016/j. eurpolymj.2024.113420.
- 38. Wu, P., Jiao, Y., Wu, W., Meng, C., Cui, Y. & Qu, H. (2024). Flame retardancy and smoke suppression properties of bio-based chitosan polyelectrolyte flame retardant containing P and N in epoxy resin. Int. J. Biol. Macromol., 279, 135001. DOI: 10.1016/j.ijbiomac.2024.135001.
- 39. Sun, X., Miao, W., Pan, Y.-T., Song, P., Gaan, S., Ibarra, L. H. & Yang, R. (2025). Metal-Organic Frameworks: A Solution for Greener Polymeric Materials with Low Fire Hazards. Adv. Sustain. Syst., 9 (2). DOI: 10.1002/adsu.202400768.
- 40. Hou, B., Song, K., Ur Rehman, Z., Song, T., Lin, T., Zhang, W., Pan, Y.-T. & Yang, R. (2022). Precise Control of a Yolk-Double Shell Metal-Organic Framework-Based Nano-structure Provides Enhanced Fire Safety for Epoxy Nanocomposites. ACS Appl. Mater. Interfaces, 14 (12), 14805–14816. DOI: 10.1021/acsami.2c01334.
- 41. Song, K., Hou, B., Ur Rehman, Z., Pan, Y.-T., He, J., Wang, D.-Y. & Yang, R. (2022). “Sloughing” of metal-organic framework retaining nanodots via step-by-step carving and its flame-retardant effect in epoxy resin. Chem. Eng. J., 448, 137666. DOI: 10.1016/j.cej.2022.137666.
- 42. Hou, B., Zhang, W., Lu, H., Song, K., Geng, Z., Ye, X., Pan, Y.-T., Zhang, W. & Yang, R. (2022). Multielement Flame-Retardant System Constructed with Metal POSS-Organic Frameworks for Epoxy Resin. ACS Appl. Mater. Interfaces, 14 (43), 49326–49337. DOI: 10.1021/acsami.2c14740.
- 43. Song, K., Bi, X., Yu, C., Pan, Y.-T., Xiao, P., Wang, J., Song, J.-I., He, J. & Yang, R. (2024). Structure of Metal-Organic Frameworks Eco-Modulated by Acid-Base Balance toward Biobased Flame Retardant in Polyurea Composites. ACS Appl. Mater. Interfaces, 16 (12), 15227–15241. DOI: 10.1021/acsami.4c02187.
- 44. Gong, K., Cai, L., Shi, C., Gao, F., Yin, L., Qian, X. & Zhou, K. (2022). Organic-inorganic hybrid engineering MXene derivatives for fire resistant epoxy resins with superior smoke suppression. Compos. Part Appl. Sci. Manuf., 161, 107109. DOI: 10.1016/j.compositesa.2022.107109.
- 45. Karthikeyan, R., Rajkumar, S. & Ravi, B. (2024). Effect of Selective Laser Sintering Polyamide-12 Powder as a Filler in Glass Fiber Reinforced Epoxy Composites. J. Polym. Mater., 41 (3), 131–141. DOI: 10.32604/jpm.2024.055989.
- 46. Rawat, R., Talwar, M., Diwan, R. & Tyagi, A. (2021). A study on Flame-retardancy Property of UV Curable Epoxy Coating for Wooden Surfaces using Boron Diluent and Phosphorus Based Initiator. J. Polym. Mater., 38 (3–4), 281–294. DOI: 10.32381/JPM.2021.38.3-4.9.
- 47. Bessa, W., Trache, D., Moulai, S., Tarchoun, A., Abdelaziz, A., Hamidon, T. & Hussin, M. (2024). Polybenzoxazine/Epoxy Copolymer Reinforced with Phosphorylated Microcrystalline Cellulose: Curing Behavior, Thermal, and Flame Retardancy Properties. FIBERS, 12 (8). DOI: 10.3390/fib12080061.
- 48. Zhong, Z., Ju, A., Li, Q. & Dou, Y. (2024). Bio-derived polyphosphazene modified halloysite nanotubes as eco-friendly flame retardants to significantly reduce smoke release and enhance the fire safety of epoxy resin. Eur. Polym. J., 210, 112908. DOI: 10.1016/j.eurpolymj.2024.112908.
- 49. Li, F., Huang, Z., Liu, C., Yang, M., Wu, J., Rao, W. & Yu, C. (2024). A novel P/N/Si/Zn-containing hybrid flame retardant for enhancing flame retardancy and smoke suppression of epoxy resins. RSC Adv., 14 (12), 8204–8213. DOI: 10.1039/D4RA00166D.
- 50. Li, P., Wang, J., Wang, C., Xu, C. & Ni, A. (2024). The Flame Retardant and Mechanical Properties of the Epoxy Modified by an Efficient DOPO-Based Flame Retardant. POLYMERS, 16 (5). DOI: 10.3390/polym16050631.
- 51. Bi, X., Song, K., Zhang, H., Pan, Y.-T., He, J., Wang, D.-Y. & Yang, R. (2024). Dimensional change of red phosphorus into nanosheets by metal–organic frameworks with enhanced dispersion in flame retardant polyurea composites. Chem. Eng. J., 482, 148997. DOI: 10.1016/j.cej.2024.148997.
- 52. Huang, X., Cai, H., Gao, L., Mao, Y. & Huang, W. (2024). The synthesis of biphenyl ether/vanillin-based flame retardants for enhancing both the flame retardant properties and mechanical performance of epoxy resin. J. Appl. Polym. Sci., 141 (17). DOI: 10.1002/app.55281.
- 53. Deng, Z., Shi, M., Liang, Y., Yang, X. & Huang, Z. (2024). Phosphorus-nitrogen synergistic flame retardant (PNFR) towards epoxy resin with excellent flame retardancy and satisfactory mechanical strength: An insight into pyrolysis and flame retardant mechanism. Polym. Test., 131, 108352. DOI: 10.1016/j.polymertesting.2024.108352.
- 54. Wu, Y., Long, J., Bing, L. & Yan, Y. (2024). Synthesis and properties of a new halogen-free flame-retardant epoxy resin flame retardant. PIGMENT RESIN Technol., 53 (1), 62–68. DOI: 10.1108/PRT-01-2022-0009.
- 55. Yan, L., Wei, Z., Guan, J., Tang, X. & Liu, Y. (2024). Intercalated kaolinite with ammonium dihydrogen phosphate as an effective flame retardant to enhance the flame retardance and smoke suppression of epoxy resins. J. Appl. Polym. Sci., 141 (13). DOI: 10.1002/app.55149.
- 56. Ma, X., Kang, N., Zhang, Y., Min, Y., Yang, J., Ban, D., Zhao, W., Malucelli, G. & Sonnier, R. (2024). Enhancing Flame Retardancy and Smoke Suppression in Epoxy Resin Composites with Sulfur-Phosphorous Reactive Flame Retardant. MOLECULES, 29 (1). DOI: 10.3390/molecules29010227.
- 57. Yang, W., Wu, Q., Zhou, Y., Zhu, S., Wei, C., Lu, H., Yang, W. & Yuen, R. K. K. (2024). Multifunctional phosphorus-containing porphyrin dye for efficiently improving the thermal, toughness, flame retardant and dielectric properties of epoxy resins. Prog. Org. Coat., 186, 107967. DOI: 10.1016/j.porgcoat.2023.107967.
- 58. Qi, Y., Ye, X., Huan, X., Xu, Q., Ma, S., Bao, D., Zhou, G., Zhang, D., Zhang, Y. & Du, H. (2024). P/N/S flame retardant based on DOPS-triazine groups for improving the flame retardancy, char formation properties and mechanical properties of epoxy resin. Eur. Polym. J., 202, 112634. DOI: 10.1016/j.eurpolymj.2023.112634.
- 59. Li, H., Wang, X., Yao, X. & Chu, H. (2023). Synthesis and properties of chlorine and phosphorus containing rubber seed oil as a second plasticizer for flame retardant polyvinyl chloride materials. Pol. J. Chem. Technol., 25 (2), 36–42. DOI: 10.2478/pjct-2023-0015.
- 60. Chen, S., Li, J., Yuan, Y., Fu, Z., Ma, D., Zhang, L., Wang, G. & Fang, D. (2024). Zinc hydroxystannate coated by polyphosphazene to improve the fire safety and suppress the smoke of epoxy resin. Prog. Org. Coat., 186, 108041. DOI: 10.1016/j.porgcoat.2023.108041.
- 61. Zhang, H., Peng, Y., Xiao, Y., Kong, S., He, X., Liu, L., Lou, G., Kuang, Y., Fu, S. & Rao, Q. (2024). A novel multifunctional phosphorous and nitrogenous reactive flame retardant toward epoxy resins by one-pot method. J. Appl. Polym. Sci., 141 (6). DOI: 10.1002/app.54929.
- 62. Liu, H., Liang, B. & Long, J. (2023). Synthesis and application of halogen-free epoxy resin flame retardant curing agent. HIGH Perform. Polym., 35 (10), 1001–1013. DOI: 10.1177/09540083231195524.
- 63. He, Y., Cui, X., Liu, Z., Lan, F., Sun, J., Li, H., Gu, X. & Zhang, S. (2023). A new approach to prepare flame retardant epoxy resin with excellent transmittance, mechanical properties, and anti-aging performance by the incorporation of DOPO derivative. Polym. Degrad. Stab., 218. DOI: 10.1016/j. polymdegradstab.2023.110579.
- 64. Li, J., Liu, Q., Zhou, Y., Cai, Y., Shi, K., Zhao, H., Meng, Y. & Zheng, P. (2023). A novel multi-element flame retardant containing phosphorus, nitrogen and sulfur for enhancing the fire safety of epoxy resin composites. HIGH Perform. Polym., 35 (9), 901–912. DOI: 10.1177/09540083231194706.
- 65. Yang, H., Qin, Y., Liang, D., Lu, X. & Gu, X. (2023). Preparation of a novel flame retardant based on phosphorus/nitrogen modified lignin with metal-organic framework and its application in epoxy resin. J. Therm. Anal. Calorim., 148 (22), 12845–12857. DOI: 10.1007/s10973-023-12578-3.
- 66. Cen, X., Cao, Z. & Wang, Z. (2024). Flame retardancy, dielectric performance, pyrolysis behavior of epoxy resin and cyanate ester composites containing a multifunctional flame retardant. J. VINYL Addit. Technol., 30 (2), 423–438. DOI: 10.1002/vnl.22058.
- 67. Shi, C., Wan, M., Qian, X., Jing, J. & Zhou, K. (2023). Zinc Hydroxystannate/Carbon Nanotube Hybrids as Flame Retardant and Smoke Suppressant for Epoxy Resins. MOLECULES, 28 (19). DOI: 10.3390/molecules28196820.
- 68. Sun, S., Yu, Q., Yu, B. & Zhou, F. (2023). New Progress in the Application of Flame-Retardant Modified Epoxy Resins and Fire-Retardant Coatings. COATINGS, 13 (10). DOI: 10.3390/coatings13101663.
- 69. Pu, Z., Zou, L., Wu, F., Wang, X., Peng, Q., Zhong, J., Liu, X., Wang, Y., Pan, Y., Jiang, D. & Ning, Z. (2024). Preparation of phosphorus-nitrogen flame retardant DOPO-DBAPh and its flame retarded epoxy-based composites. J. VINYL Addit. Technol., 30 (2), 398–409. DOI: 10.1002/vnl.22055.
- 70. Guo, Y., Yang, H., Rong, H., Chen, Z., Chen, T., Yu, Y., He, C., Zhou, J., Zhang, Q., Bu, Y. & Jiang, J. (2023). Hydrophobicity, transparency, mechanically excellent and fire safety multifunctional epoxy resin based on a novel DOPO derivative with cyano group. Prog. Org. Coat., 185. DOI: 10.1016/j.porgcoat.2023.107897.
- 71. Soni, V. & Dahiya, J. (2023). Synthesis and characterization of a novel P/N containing flame retardant and its effect on flame-retardancy, thermal and mechanical properties of epoxy/clay nanocomposites. HIGH Perform. Polym., 35 (7), 740–749. DOI: 10.1177/09540083231169166.
- 72. Tian, L., Wang, X., Zhang, H., Zheng, Q., Cui, J., Yang, B., Guo, J., Mu, B., Bao, X., Wang, Z. & Li, H. (2023). Synthesis of functionalized Salen-Ni-based polyphosphazene flame retardant and its performance study. Polym. Adv. Technol., 34
- 73. Zhang, G., Dong, Y., Yao, M., Cui, Y., Meng, W., Wang, S., Qu, H. & Xu, J. (2023). Preparation of a MOF flame retardant containing phosphazene ring and its effect on the flame retardant of epoxy resin. React. Funct. Polym., 191, 105670. DOI: 10.1016/j.reactfunctpolym.2023.105670.
- 74. Peng, C., Xu, H., Chen, G., Luo, W., Zeng, B., Yuan, C., Xu, Y. & Dai, L. (2023). Synthesis of metal-containing Schiff based cyclomatrix polyphosphazene microspheres based on polyoxometalates and application in flame retardance for epoxy resin. J. Appl. Polym. Sci., 140 (37). DOI: 10.1002/app.54413.
- 75. Kamalipour, J., Beheshty, M. & Zohuriaan-Mehr, M. (2023). Thermal decomposition kinetic study on one-pack formulations of epoxy resin cured with novel phosphorus-containing flame retardant latent curing agents. Int. J. Polym. Anal. Charact. DOI: 10.1080/1023666X.2023.2264604.
- 76. Liu, Z., Zhang, Y., Jia, Z., Liu, H. & Liu, Z. (2023). A novel epoxy resin system containing bismaleimide and DOPO-based flame retardant with excellent flame retardancy and toughness. J. Appl. Polym. Sci., 140 (36). DOI: 10.1002/app.54373.
- 77. Cao, J., Pan, Y., Vahabi, H., Song, J., Song, P., Wang, D. & Yang, R. (2024). Zeolitic imidazolate frameworks-based flame retardants for polymeric materials. Mater. TODAY Chem., 37. DOI: 10.1016/j.mtchem.2024.102015.
- 78. Wang, H., Wang, Y., Li, T., Yu, C., Lin, P., Liu, J., Lan, Y. & Pan, Y. (2025). Nature-Inspired, Heat & Noise-Insulation, Highly Robust MOFs-Based Hybrid Fire-Retardant Coatings with Easy-Recycling Feature. Adv. Funct. Mater. DOI: 10.1002/adfm.202500800.
- 79. Li, Z., Yu, S., Gong, Z., Yao, X., Zhang, J., Wang, G., Pan, Y., Gao, H. & Wang, N. (2025). A natural glue paste aminated graphene oxide onto ammonium polyphosphate towards “multi-phase integrated” polymer composites: synthesis and application. Sustain. Mater. Technol., 44. DOI: 10.1016/j.susmat.2025.e01336.
- 80. Song, K., Pan, Y., He, J. & Yang, R. (2024). Coordination bond cleavage of metal-organic frameworks and application to flame-retardant polymeric materials. Ind. Chem. Mater., 2 (4), 556–570. DOI: 10.1039/d3im00110e.
- 81. Li, H., Xu, Y., Zhang, Z., Han, F., Pan, Y.-T. & Yang, R. (2025). Advancements and Challenges in Enhancing Thermal Stability of Lithium-Ion Battery Separators: Review on Coating Materials, High-Temperature Resistant Materials and Future Trends. J. Polym. Mater., 42 (1). DOI: 10.32604/jpm.2025.062352.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48d8f2f1-fdfe-4ae6-a022-8ad830862ba7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.