PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioremediation of a spent metalworking fluid with auto- and allochthonous bacterial consortia

Identyfikatory
Warianty tytułu
PL
Bioremediacja zużytego płynu obróbkowego metali z wykorzystaniem konsorcjów bakterii auto- i alochtonicznych
Języki publikacji
EN
Abstrakty
EN
Spent mineral oil-based metalworking fluids are waste products of the machining processes and contribute substantially to the global industrial pollution with petroleum oil products. Wastewaters containing oily emulsions are ecologically hazardous and thus a variety of methods have been implemented to prevent these effluents from affecting the natural environment. Most of these methods rely upon physical-chemical treatment and phase separation; however, none of them proved to be effective enough to meet tightening environmental regulations. Therefore, novel technologies need to be elaborated and there is growing interest in implementing biological treatment methods based on microbial bioremediation. In this study an oil/water emulsion obtained from a waste stream of the metal-processing industry was tested for biodegradability of its organic constituents. This liquid waste was found non-toxic to bacterial consortia and was colonized with indigenous microorganisms (approx. 107 cfu · cm−3). The total load of organic content was determined as a chemical oxygen demand (COD) value of 48 200 mg O2 · dm−3. Emulsion treatment was carried out using a threefold wastewater dilution and employing two variants of biostimulated aerobic bacterial communities: (1) uninoculated emulsion, where bioremediation was carried out by the autochthonous bacteria alone, and (2) wastewater samples inoculated with a ZB-01 microbial consortium which served as a source of specialized bacteria for process bioaugmentation. Biodegradation efficiency achieved in a 14-day test was monitored by measuring both the COD parameter and the concentration of high-boiling organic compounds. Both approaches yielded satisfactory results showing significant reduction of the emulsion organic fraction; however, the resultant decrease of wastewater load tended to be more efficient for the case where the process was bioaugmented with the inoculated consortium. Gas chromatography analyses coupled with mass spectrometric detection (GC-MS) confirmed high degradation yields obtained for both cases studied (58 and 71%, respectively) in a 28-day test. It is concluded that oil-based metalworking emulsions can undergo efficient biological treatment under conditions enabling aerobic bacterial proliferation and that xenobiotic biodegradation kinetics can be accelerated by bioaugmenting the process with allochthonous microbial consortia.
PL
Zużyte płyny obróbkowe metali, powstałe na bazie oleju mineralnego, są produktami odpadowymi przemysłu maszynowego i znacząco przyczyniają się do globalnego skażenia poprzemysłowego substancjami ropopochodnymi. Ścieki zawierające emulsje olejowe stanowią zagrożenie ekologiczne i z tego powodu podjęto szereg działań mających na celu ograniczenie ich negatywnego oddziaływania na środowisko naturalne. Większość stosowanych metod opiera się na oczyszczaniu i separacji fazowej z wykorzystaniem procesów fizykochemicznych. Żadna z opracowanych technologii nie jest jednak wystarczająco efektywna, aby spełnić coraz ostrzejsze normy środowiskowe. Opracowuje się zatem nowe metody, wśród których rosnące uznanie znajduje oczyszczanie biologiczne, wykorzystujące drobnoustroje zdolne do bioremediacji zanieczyszczeń. W pracy badano możliwości biodegradacji organicznych składników emulsji typu olej/woda, będącej odpadowym płynem obróbkowym przemysłu metalurgicznego. Stwierdzono, że odciek nie był toksyczny wobec konsorcjów bakteryjnych, będąc jednocześnie skolonizowany przez mikroorganizmy autochtoniczne (ok. 107 jtk · cm−3). Całkowite obciążenie emulsji związkami organicznymi, wyznaczone jako chemiczne zapotrzebowanie tlenu (ChZT), wynosiło 48 200 mg O2 · dm−3. Testowano dwa warianty procesowe oczyszczania ścieku trzykrotnie rozcieńczonego z wykorzystaniem biostymulowanych, aerobowych biocenoz bakteryjnych: (1) emulsja niezaszczepiona, w której bioremediacja prowadzona była wyłącznie przez drobnoustroje autochtoniczne, (2) ściek zaszczepiony konsorcjum mikroorganizmów ZB-01, które stanowiło źródło wyspecjalizowanych bakterii wspomagających bioproces. Wydajność biodegradacji uzyskana w ciągu 14-dniowego testu była mierzona wartością ChZT oraz koncentracją wysokowrzących związków organicznych. Wyniki obu podejść badawczych były zadowalające, a uzyskany spadek zawartości frakcji organicznej znaczący. Jednocześnie stwierdzono większy stopień obniżenia ładunku w ścieku oczyszczanym metodą bioaugmentacji po zaszczepieniu konsorcjum bakteryjnym. Analizy chromatografii gazowej z detekcją spektrometrii mas (GC-MS) potwierdziły wysoką wydajność biodegradacji otrzymaną w ciągu 28 dni dla obu wariantów (odpowiednio 58 i 71%). Podsumowując, wykazano, że zaolejone płyny obróbkowe poddają się oczyszczaniu biologicznemu w warunkach pozwalających na proliferację bakterii tlenowych, a kinetyka biodegradacji ksenobiotyków może być przyśpieszana poprzez bioaugmentację procesu konsorcjami drobnoustrojów alochtonicznych.
Rocznik
Strony
285--299
Opis fizyczny
Bibliogr. 52 poz., wykr., tab.
Twórcy
autor
  • Department of Biochemistry, Institute of Plant Biology and Biotechnology, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland, phone +48 12 622 5193
autor
  • Department of Biochemistry, Institute of Plant Biology and Biotechnology, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland, phone +48 12 622 5193
autor
  • Department of Biochemistry, Institute of Plant Biology and Biotechnology, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland, phone +48 12 622 5193
Bibliografia
  • [1] Coca J, Gutierrez G, Benito JM. Treatment of oily wastewater. In: Coca-Prados J, Gutierrez-Cervello G, editors. Water Purification and Management. NATO Science for Peace and Security Series - C: Environmental Security. Dordrecht: Springer-Verlag; 2011.
  • [2] Lazarević FB, Krstić IM, Lazić ML, Savić DS, Skala DU, Vejlković VB. Hem Ind. 2013;67(1):59-68. DOI: 10.2298/HEMIND120317055L
  • [3] Geier J, Lessmann H. Metalworking fluids. In: Frosch PJ, Menne T, Lepoittevin J-P, editors. Contact Dermatitis. 3rd edition. Berlin Heidelberg: Springer; 2006.
  • [4] da Silva EJ, Bianchi EC, de Aguiar PR. Revista de Ciencia & Technologia. 2001;8(18):67-77.
  • [5] Biresaw G. Inform Champaign. 2004;15:148-149.
  • [6] Shashidhara YM, Jayaram SR. Tribol Int. 2010;43:1073-1081. DOI: 10.1016/j.triboint.2009.12.065.
  • [7] Lawal SA, Choudhury IA, Nukman Y. Int J Mach Tool Manuf. 2012;52:1-12. DOI: 10.1016/j.ijmachtools.2011.09.003.
  • [8] Wichmann H, Stache H, Schmidt Ch, Winter M, Bock R, Herrmann Ch, et al. J Clean Prod. 2012;43:12-19. DOI: 10.1016/j.jclepro.2012.12.042.
  • [9] Cheng C, Phipps D, Alkhaddar RM. Water Res. 2005;39:4051-4063. DOI: 10.1016/j.watres.2005.07.012.
  • [10] MacAdam J, Ozgencil H, Autin O, Pidou M, Temple C, Parsons S, et al. Environ Technol. 2012;33(24):2741-2750. DOI: 10.1080/09593330.2012.678389.
  • [11] Rabenstein A, Koch T, Remesch M, Brinksmeier E, Kuever J. Int Biodeter Biodegr. 2009;63(8):1023-1029. DOI: 10.1016/j.ibiod.2009.07.005.
  • [12] Janda K, Przybulewska K. Postępy Mikrobiol. 2004;43(2):167-187.
  • [13] Bakalova S, Doycheva A, Ivanova I, Groudeva V, Dimkov R. Biotechnol Biotechnol Eq. 2007;21(4):437-441. DOI: 10.1080/15459621003741631.
  • [14] Thompson IP, van der Gast CJ. The microbiology of metal working fluids. In: Timmis KN, editor. Handbook of Hydrocarbon and Lipid Microbiology. Berlin Heidelberg: Springer-Verlag; 2010.
  • [15] Saha R, Donofrio RS. Appl Microbiol Biotechnol. 2012;92:1119-1130. DOI: 10.1007/s00253-012-4055-7.
  • [16] Trafny EA. Int J Occup Med Environ Health. 2013;26(1):4-15. DOI: 10.2478/S13382-013-0075-5.
  • [17] Mirer FE. Am J Ind Med. 2010;53(8):792-801. DOI: 10.1002/ajim.20853.
  • [18] Cyprowski M, Piotrowska M, Zakowska Z, Szadkowska-Stańczyk I. Int J Occup Med Environ Health. 2007;20(4):365-371. DOI: 10.2478/v10001-007-0036-y.
  • [19] Cyprowski M. Bezp pracy. 2012;9:16-19.
  • [20] Park DU, Jin KW, Koh DH, Kim BK, Kim KS, Park DY. J Occup Health. 2008;50(2):212-220. DOI: 10.1539/joh.O7006.
  • [21] Murat JB, Grenouillet F, Reboux G, Penven E, Batchili A, Dalphin JC, et al. Appl Environ Microbiol. 2012;78(1):34-41. DOI: 10.1128/AEM.06230-11.
  • [22] Gerulova K, Mihalkova A, Sergovicova M, Guoth A, Nadasska Z. Res Papers Faculty Materials Sci Technol Slovak Univ Technol. 2011;19(31):45-56. DOI: 10.2478/v10186-011-0055-1.
  • [23] Grijalbo L, Fernandez-Pascual M, Garcia-Seco D, Gutierrez-Manero FJ, Lucas JA. J Hazard Mater. 2013;260:220-230. DOI: 10.1016/j.jhazmat.2013.05.026.
  • [24] Water Framework Directive 2000. European Parliament (2000/60/EC). http://eur-lex.europa.eu, access: 20 January 2014.
  • [25] Effluent limitations guidelines and new source performance standards for the metal products and machinery point source category; Final Rule. US Environmental Protection Agency, Federal Register. 2003;68(92).
  • [26] Theaker D, Thompson I. The industrial consequences of microbial deterioration of metal working fluid. In: Timmis KN, editors. Handbook of Hydrocarbon and Lipid Microbiology. Berlin Heidelberg: Springer-Verlag; 2010.
  • [27] Hu X, Bekassy-Molnar E, Vatai G, Koris A. Environ Prot Eng. 2005;31(3-4):109-118.
  • [28] Saifuddin N, Chua KH. Biotechnology. 2006;5(3):308-314. DOI: 10.3923/biotech.2006.308.314.
  • [29] Cambiella A, Ortea E, Rios G, Benito JM, Pazos C, Coca J. J Hazard Mater. B. 2006;131:195-199. DOI: 10.1016/j.jhazmat.2005.09.023.
  • [30] Muszyński A, Załęska-Radziwiłł M, Łebkowska M, Nowak D. Arch Environ Contamn Toxicol. 2007;52(4):483-488.
  • [31] Gutierrez G, Benito JM, Coca J, Pazos C. Ind Eng Chem Res. 2009;48(4):2100-2106. DOI: 10.1021/ie801054d.
  • [32] Jagadevan S, Graham NJ, Thompson IP. J Hazard Mater. 2013;244-245:394-402. DOI: 10.1016/j.jhazmat.2012.10.071.
  • [33] Kim BR, Rai DN, Zemla JF, Lipari F, Harvath PV. Water Res. 1994;28(6):1453-1461. DOI: 10.1016/0043-1354(94)90313-1.
  • [34] Hilal N, Busca G, Waller MD. J Chem Technol Biotechnol. 2005;80: 641-648. DOI: 10.1002/jctb.1241.
  • [35] Muszyński A, Łebkowska M. Pol J Environ Stud. 2005;14(1):73-79.
  • [36] Cheng C, Phipps D, Alkhaddar RM. Water Environ J. 2006;20:227-232. DOI: 10.1111/j.1747-6593.2005.00010.x.
  • [37] Anderson JE, Lofton TV, Kim BR, Mueller SA. Water Environ Res. 2009;81(4):357-364.
  • [38] van der Gast CJ, Thompson IP. Biotechnol Bioeng. 2005;89(3):357-366. DOI: 10.1002/bit.20351.
  • [39] Kim BR, Anderson SG, Zemla JF. Water Environ Res. 1992;64(3);258-262.
  • [40] van der Gast JC, Whiteley AS, Lilley AK, Knowles CJ, Thompson IP. Environ Microbiol. 2003;5(6):453-461. DOI: 10.1046/j.1462-2920.2003.00428.x.
  • [41] Connolly HE, van der Gast CJ, Wylie D, Stephenson T, Thompson IP. J Chem Technol Biotechnol. 2006;81:1540-1546.
  • [42] Moscoso F, Deive FJ, Villar P, Pena R, Herrero L, Longo MA, et al. Chemosphere. 2012;86,420-426. DOI: 10.1016/j.chemosphere.2011.10.012.
  • [43] Jagadevan S, Jayamurthy M, Dobson P, Thompson IP. Water Res. 2012;46:2395-2404. DOI: 10.1016/j.watres.2012.02.006.
  • [44] Kaszycki P, Supel P, Petryszak P. J Ecol Eng. 2014;15(3):14-22. DOI: 10.12911/22998993.1109117.
  • [45] Kaszycki P, Szumilas P, Kołoczek H. Inż Ekol. 2001;4:15-22.
  • [46] Kaszycki P, Pawlik M, Petryszak P, Kołoczek H. Ecol Chem Eng A. 2010;17(4-5):405-414. http://tchie.uni.opole.pl/ece_a/A_17_4-5/ECE_A_17%284-5%29.pdf.
  • [47] Kaszycki P, Petryszak P, Pawlik M, Kołoczek H. Ecol Chem Eng S. 2011;18(1):83-92.
  • [48] Jagadevan S, Dobson P, Thompson IP. Biores Technol. 2011;102:8783-8789. DOI: 10.1016/j.biortech.2011.07.031.
  • [49] Kim BR, Zemla JF, Anderson SG, Stroup DP, Rai DN. Water Environ Res. 1992;64:216-222.
  • [50] Teli A, Vyrides I, Stuckey DC. J Chem Technol Biotechnol. 2014; DOI: 10.1002/jctb.4339.
  • [51] Rodriguez-Verde I, Regueiro L, Pena R, Álvarez JA, Lema JM, Carballa M. Biores Technol. 2014;155:281-288. DOI: 10.1016/j.biortech.2013.12.090.
  • [52] Kaszycki P, Petryszak P, Kołoczek H. Ecol Chem Eng A, 2008;15(11):1257-1271.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48d84f05-39bc-4af0-a3a7-dc0c351ccee5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.