Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Honeycomb structures with zero Poisson’s ratio show promising potential for application in variable-sweep wing aircraft. The shear properties of these honeycomb structures serve as a crucial indicator of their morphing capacity. This paper derives the linear and non-linear shear properties of a honeycomb structure with zero Poisson’s ratio. A modified factor is introduced to establish a relationship between the linear and non-linear shear modulus of the honeycomb structure, simplifying the calculation method of the non-linear shear modulus. The validity of theoretical predictions is then confirmed using the finite element method Furthermore, the influences of the geometric parameters on the shear properties of the honeycomb structure with zero Poisson’s ratio are investigated, highlighting the varying contributions of these cell geometric parameters to the shear properties.
Czasopismo
Rocznik
Tom
Strony
521--541
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
autor
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
autor
- Beijing Institute of Space Long March Vehicle, Beijing, 100076, China
autor
- Beijing Institute of Space Long March Vehicle, Beijing, 100076, China
autor
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
autor
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
autor
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
autor
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
Bibliografia
- 1. R. Yu, W. Luo, H. Yuan, J. Liu, W. He, Z. Yu, Experimental and numerical research on foam filled re-entrant cellular structure with negative Poisson’s ratio, Thin-Walled Structures, 153, 106679, 2022.
- 2. Y. Zhu, Q. Qin, J. Zhang, On effective mechanical properties of an orthogonal corrugated sandwich structure, Materials & Design, 201, 109491, 2021.
- 3. V.H. Nam, V.M. Duc, C.V. Doan, N.T.T. Xuan, N.T. Phuong, Nonlinear postbucking behavior of auxetic-core toroidal shell segments with Graphene reinforced face sheets under axial loads, Archives of Mechanics, 74, 89–108, 2022.
- 4. T.C. Hales, The honeycomb conjecture, Discrete & Computational Geometry, 25, 1–22, 2001.
- 5. A.J. Wang, D.L. McDowell, In-plane stiffness and yield strength of periodic metal honeycomb, Journal of Engineering Materials and Technology, 126, 137–156, 2004.
- 6. L.L. Hu, M.Z. Zhou, H. Deng, Dynamic crushing response of auxetic honeycombs under large deformation: Theoretical analysis and numerical simulation, Thin-Walled Structures, 131, 373–384, 2018.
- 7. C. Qi, F. Jiang, C. Yu, S. Yang, In-plane crushing response of tetra-chiral honeycombs, International Journal of Impact Engineering, 130, 247–265, 2019.
- 8. Q.T. Deng, Z.C. Yang, Effect of Poisson’s ratio on functionally graded cellular structures, Materials Express, 6, 461–472, 2016.
- 9. X. Zhao, Q. Gao, L. Wang, Q. Yu, Z.D. Ma, Dynamic crushing of double-arrowed auxetic structure under impact loading, Materials & Design, 160, 527–537, 2018.
- 10. J.N. Grima, L. Oliveri. D. Attard, B. Ellul, R. Gatt, G. Cicala, G. Recca, Hexagonal honeycomb with zero Poisson’s ratio and enhanced stiffness, Advanced Engineering Materials, 12, 855–862, 2010.
- 11. W.D. Liu, H.J. Li, J. Zhang, Y.L. Bai, In-plane mechanics of a novel cellular structure for multiple morphing applications, Composite Structures, 207, 598–611, 2019.
- 12. S. Özgen, Y. Yaman, M. Sahin, G. Seber, L. Ünlüsoy E. Sakarya T. Insuyu, G. Bayram, Y. Uludad, A. Yilmaz, Morphing air vehicle concepts, International Unmanned Vehicle Workshop, Istanbul, Turkey, 2010.
- 13. C.L. Thill, J. Etches, I. Bond, K. Potter, P. Weaver, Morphing skins, The Aeronautical Journal, 112, 117–139, 2008.
- 14. M.H. Fu, O.T. Xu, L.L. Hu, T.X. Yu, Nonlinear shear modulus of re-entrant hexagonal honeycombs under large deformation, International Journal of Solids and Structures, 80, 284–296, 2016.
- 15. C. Qiu, Z. Guan, S. Jiang, Z. Li, A method of determining effect elastic properties of honeycomb cores based on equal strain energy, Chinese Journal of Aeronautics, 30, 766–799, 2017.
- 16. R. Yazdanparast, R. Rafiee, Developing a homogenization approach for estimation of in-plane effective elastic moduli of hexagonal honeycombs, Engineering Analysis with Boundary Elements, 117, 202–211, 2022.
- 17. K.R. Olympio, F. Gandhi, Zero Poisson’s ratio cellular honeycombs for flex skins undergoing one-dimensional morphing, Journal of Intelligent Material Systems and Structures, 21, 1737–1753, 2010.
- 18. X. Gong, J. Huang, F. Scarpa, Y. Liu, J. Leng, Zero Poisson’s ratio cellular structure for two-dimensional morphing applications, Composite Structures, 134, 384–392, 2015.
- 19. J. Huang, W. Liu, A. Tang, Effects of fine-scale features on the elastic properties of zero Poisson’s ratio honeycombs, Materials Science and Engineering: B, 236, 95–103, 2018.
- 20. W.D. Liu, H.D. Li, J. Zhang, Elastic properties of a cellular structure with in-plane corrugated cosine beams, Composite Structure, 180, 251–262, 2017.
- 21. W.D. Liu, H.L. Li, J. Zhang, H.D. Li, Elastic properties of a novel cellular structure with trapezoidal beams, Aerospace Science and Technology, 75, 315–328, 2018.
- 22. J. Chen, X. Shen, J. Li, Zero Poisson’s ratio flexible skin for potential two-dimensional wing morphing, Aerospace Science and Technology, 45, 228–241, 2015.
- 23. Y. Zhao, M. Ge, W. Ma, The effective in-plane elastic of hexagonal honeycombs with consideration for geometric nonlinearity, Composite Structures, 234, 111749, 2020.
- 24. S. Malek, L. Gibson, Effective elastic properties of periodic hexagonal honeycombs, Mechanics of Materials, 91, 226–240, 2015.
- 25. L. Song, Z. Yin, T. Wang, X. Shen, J. Wu, M. Su, Nonlinear mechanics of a thinwalled honeycomb with zero Poisson’s ratio, Mechanics Based Design of Structures and Machines, 51, 4977–4999, 2023.
- 26. L.H. Lan, M.H. Fu, Nonlinear constitutive relations of cellular materials, AIAA Journal, 47, 264–270, 2009.
- 27. R. Zhong, M. Fu, Q. Yin, O. Xu, L. Hu, Special characteristics of tetrachiral honeycombs under large deformation, International Journal of Solids and Structures, 169, 166–176, 2019.
- 28. G.A. Becus, Homogenization and random evolutions: Applications to the mechanics of composite materials, Journal of Applied Mathematics, 37, 209–217, 1979.
- 29. J. Shigley, C. Mishke, R. Budynas, Mechanical Engineering Design, McGraw-Hill, New York, pp. 75–90, 2004.
- 30. S. Timoshenko, Theory of Elastic Stability, McGraw-Hill, New York, 1970.
- 31. J. Singer, J. Arbocaz, T. Weller, Buckling Experiment Methods in Buckling of Thin-Walled Structures. Shell, Built-up Structures, Composites and Additional Topics, John Wiley & Sons, New Jersey, 2002.
- 32. E.A. Bubert, B.K.S. Woods, K. Lee, C.S. Kothera, N.M. Wereley, Design and fabrication of a passive 1D morphing aircraft skin, Journal of Intelligent Material Systems and Structures, 21, 1699–1717, 2010.
- 33. M. De Saint-Venant, Memoire sur la Torsion des Prismes, Memoir des Savants Etrangers, 14, 233, 1855.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48d33044-51b4-43bb-a42e-c334d1e5a714