Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Internal recycle (IR) ratio is an important operation parameter for the anaerobic/anoxic/oxic (A2O) wastewater treatment process. Three laboratory-scale A2O wastewater treatment processes with IR ratios 100%, 200%, and 300% were set up to study its influence on the denitrification process and nirS gene-containing bacteria. Results showed theremoval rate of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN) and total phosphorus (TP) increased at different levels as the IR rate augmented from 100% to 300%. NirS gene numbers were increased from 1.8×108 to 3.2×108 copies/g MLSS, which was positively correlated with the denitrification rate in anoxic areas. Moreover, similarities were observed in the community structures of denitrifying bacteria that contained the nirS gene under different operation modes. These results indicated that increasing the IR rate in the A2O treatment process could benefit nirS gene-containing bacteria and improve denitrification ability observably while maintaining the stability of the community structure of the system.
Czasopismo
Rocznik
Tom
Strony
87--101
Opis fizyczny
Bibliogr. 25 poz., tab., rys.
Twórcy
autor
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, Henan, China
autor
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
autor
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
autor
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100085, China
autor
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, Henan, China
Bibliografia
- [1] XIE T., WANG C.W., Impact of different factors on greenhouse gas generation by wastewater treatment plants in China, Water Res., 2011, 2, 1448.
- [2] PYNAERT K., SMITS B.F., BEHEYDT D., VERSTRAETE W., Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition, Environ. Sci. Tech., 2004, 38 (4), 1228.
- [3] KAMPSCHREUR M.J., TEMMINK H., KLEEREBEZEM R., JETTEN M.S.M., VAN LOOSDRECHT M.C.M., Nitrous oxide emission during wastewater treatment, Water Res., 2009, 43 (17), 4093.
- [4] ZHOU Z.F., ZHENG Y.M., SHEN J.P., ZHANG L.M., HE J.Z., Response of denitrification genes nirS, nirK, and nosZ to irrigation water quality in a Chinese agricultural soil, Environ. Sci. Poll. R., 2011, 18 (9),1644.
- [5] FONGSATITKUL P., WAREHAM D.G., ELEFSINIOTIS P., CHAROENSUK P., Treatment of a slaughterhouse wastewater: effect of internal recycle rate on chemical oxygen demand, total Kjeldahl nitrogen and total phosphorus removal, Environ. Tech., 2011, 32 (15), 1755.
- [6] YOU S.J., Identification of denitrifying bacteria diversity in an activated sludge system by using nitrite reductase genes, Biotech. Lett., 2005, 27 (19), 1477.
- [7] BRAKER G., ZHOU J., WU L., DEVOL A.H., TIEDJE J.M., Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities, Appl. Environ. Microb., 2000, 66 (5), 2096.
- [8] BERKS B.C., FERGUSON S.J., MOIR J.W., RICHARDSON D.J., Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions, Biochim. Biophys. Acta, 1995, 1232 (3), 97.
- [9] CHEN Y.G., WANG D.B., ZHENG X., LI X., FENG L.Y., CHEN H., Biological nutrient removal with low nitrous oxide generation by cancelling the anaerobic phase and extending the idle phase in a sequencing batch reactor, Chemosphere, 2014, 109, 56.
- [10] COYNE M.S., ARUNAKUMARI A., AVERILL B.A., TIEDJE J.M., Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria, Appl. Environ. Microbiol., 1989, 55 (11), 2924.
- [11] Standard methods for examination of water and wastewater, CEPB, Chinese Environmental Science Press, 4th Ed., Beijing 2002.
- [12] CHON K., CHANG J.S., LEE E., LEE J., RYU J., CHO J., Abundance of denitrifying genes coding for nitrate (narG), nitrite (nirS), and nitrous oxide (nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands, Ecol. Eng., 2011, 37 (1), 64.
- [13] WANG D.B., ZHENG W., LI X.M., YANG Q., LIAO D.X., ZENG G.M., Evaluation of the feasibility of alcohols serving as external carbon sources for biological phosphorus removal induced by the oxic/extended-idle regime, Biotech. Bioeng., 2013, 110 (3), 827.
- [14] WANG D.B., ZHENG W., LIAO D.X., LI X.M., YANG Q., ZENG G.M., Effect of initial pH control on biological phosphorus removal induced by the aerobic/extended-idle regime, Chemosphere, 2013, 90, 2279.
- [15] BAEZA J.A., GABRIEL D., LAFUENTE J., Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic (A2/O) wastewater treatment plant (WWTP), Proc. Biochem., 2004, 39 (11), 1615.
- [16] KIMA H.S., CHOUNG Y.K., AHNA S., OHA H.S., Enhancing nitrogen removal of piggery wastewater by membrane bioreactor combined with nitrification reactor, Desalination, 2008, 223 (1–3), 194.
- [17] WANG D.B., XU Q.X., YANG W.Q., CHEN H.B., LI X.M., LIAO D.X., YANG G.J., YANG Q., ZENG G.M., A new configuration of sequencing batch reactor operated as a modified aerobic/extended-idle regime for simultaneously saving reactor volume and enhancing biological phosphorus removal, Biochem. Eng. J., 2014, 87, 15.
- [18] HERNANDEZ D., ROWE J.J., Oxygen inhibition of nitrate uptake is a general regulatory mechanism in nitrate respiration, J. Biol. Chem., 1988, 263 (17), 7937.
- [19] OTTE S., GROBBEN N.G., ROBERTSON L.A., JETTEN M.S., KUENEN J.G., Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions, Appl. Environ. Microbiol., 1996, 62 (7), 2421.
- [20] LU H., CHANDRAN K., Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors, Biotech. Bioeng., 2010, 106 (3), 390.
- [21] WANG L., TIAN J., LI Y., Nitrite accumulation and nitrous oxide emission during denitrification processes with quinoline or indole as the sole carbon source, J. Chem. Tech. Biotech., 2015, 90 (7), 1317.
- [22] WAN C.Y., DE WEYER H., DIELS L., THOEYE C., LIANG J.B., HUANG L.N., Biodiversity and population dynamics of microorganisms in a full-scale membrane bioreactor for municipal wastewater treatment, Water Res., 2011, 45 (3), 1129.
- [23] CHON K., KIM Y., CHANG N.I., CHO J., Evaluating wastewater stabilizing constructed wetland, through diversity and abundance of the nitrite reductase gene nirS, with regard to nitrogen control, Desalination, 2010, 264 (3), 201.
- [24] KUCERA I., The release of nitric oxide from denitrifying cells of Paracoccus denitrificans by an uncoupler is the basis for a new oscillator, FEBS Lett., 1989, 249 (1), 56.
- [25] HE Z., DENG Y., VAN NOSTRAND J.D., TU Q., XU M., HEMME C.L., LI X., WU L., GENTRY T.J., YIN Y., LIEBICH J., HAZEN T.C., ZHOU J., GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity, ISME J., 2010, 4 (9), 1167.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48d14cce-7d9b-42f2-80fa-688e15ddba2b