PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of laser re-melting on micro-structure and hardness of gas-nitrided steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ parametrów laserowej obróbki cieplnej na mikrostrukturę i mikrotwardość azotowanej gazowo stali
Języki publikacji
EN
Abstrakty
EN
In this paper, modification of nitrided layer by laser re-melting was presented. The nitriding process has many advantageous properties. Controlled gas nitriding was carried out on 42CrMo4 steel. As a consequence of this process, ɛ+ɣ’ compound zone and diffusion zone were produced at the surface. Next, the nitrided layer was laser re-melted using TRUMPF TLF 2600 Turbo CO2 laser. Laser tracks were arranged as single tracks with the use of various laser beam powers (P), ranging from 0.39 to 1.04 kW. The effects of laser beam power on the microstructure, dimensions of laser tracks and hardness profiles were analyzed. Laser treatment caused the decomposition of continuous compound zone at the surface and an increase in hardness of previously nitrided layer because of the appearance of martensite in re-melted and heat-affected zones.
Rocznik
Tom
Strony
18--22
Opis fizyczny
Bibliogr. 18 poz., rys. tab.
Twórcy
autor
  • Institute of Materials Science and Engineering, Poznań University of Technology
autor
  • Institute of Precision Mechanics, Warsaw, Poland
autor
  • Institute of Materials Science and Engineering, Poznań University of Technology
autor
  • Institute of Precision Mechanics, Warsaw, Poland
Bibliografia
  • [1] Altinsoy I., Onder K.G., Celebi Efe F.G., Bindal C.,Gas nitriding behaviour of 34CrAlNi7 nitriding steel, Acta Physica Polonica A, 2014, vol. 125, s. 414-416.
  • [2] Małdziński L., Tacikowski J.,ZeroFlow gas nitriding of steels. In: Mittemeijer E.J., Somers M.A.J., editors. Thermochemical Surface Engineering of Steels Improving Materials Performance, Woodhead Publishing Series in Metals and Surface Engineering, Elsevier, 2015, vol. 62, s. 459-483.
  • [3] Michalski J., Tacikowski J., Wach P., Ratajski J.,Controlled gas nitriding of 40 HM and 38 HMJ steel grades with and without the surface compound layer, composed of iron nitrides. Maintenance Problems, 2006, vol. 2, s. 43-52.
  • [4] Michalski J., Tacikowski J., Wach P., Lunarska E., Baum H., Formation of single-phase layer of γ’-nitride in controlled gas nitriding. Metal Science and Heat Treatment, 2005, vol. 47, s. 516-519.
  • [5] Fu H., Zhang J., Huang J., Lian Y., Zhang C.,Effect of temperature on microstructure, corrosion resistance, and tougness of salt bath nitrided tool steel, Journal of Materials Engineering and Performance, 2016, vol. 25, s.3-8.
  • [6] Chen J.S., Yu C., Lu H., Phase stability, magnetism, elastic properties and hardness of binary iron nitrides from first principles, Journal of Alloys and Compounds, 2015, vol. 625, s. 224-230.
  • [7] Taktak S., Gunes I., Effect of pulse plasma nitriding on tribological properties of AISI 52100 and 440C steels, Journal Surface Science and Enigineering, 2014, vol. 8, no. 1, s. 39-56.
  • [8] Carpene E., Schaaf P., Laser nitriding of iron and aluminum, Applied Surface Science, 2002, vol. 186, s. 100-104.
  • [9] Chang K.M., Kuo C.C., Chang Y.W., Chao C.G., Liu T.F., Effects of gas nitriding pressure on the formation of nanocrystaline AlN in plasma nitrided Fe-9Al-28Mn-1.8C alloy, Surface & Coatings Technology, 2015, vol. 254, s. 313-318.
  • [10] Li S., Hu S., Hee A.C., Zhao Y., Surface modyfication of a Ti2AlC soft ceramic by plasma nitriding treatment, Surface & Coatings Technology, 2015, vol. 281, s. 164-168.
  • [11] Yan M.F., Wang Y.X., Chen X.T., Guo L.X., Zhang C.S., You Y., Bai B., Chen L., Long Z., Li R.W., Laser quenching of plasma nitrided 30CrMnSiA steel, Materials and Design, 2014, vol. 58, s. 154–160.
  • [12] Colombini E., Sola R., Parigi G., Veronesi P., Poli G., Laser Quenching of Ionic Nitrided Steel: Effect of Process Parameters on Microstructure and Optimization, Metallurgical and Materials Transactions A, 2014, vol. 45A, s. 5562-5573.
  • [13] Li Y., Wang L., Shen L., Zhang D., Wang C., Plasma nitriding of 42CrMo low alloy steels at anodic or cathodic potentials, Surface & Coatings Technology, 2010, vol. 204, s. 2337-2342.
  • [14] Wang L., Li Y., Wu X., Plasma nitriding of low alloy steels at floating and cathodic potentials, Applied Surface Science, 2008, 254, s. 6595-6600.
  • [15] Roliński E., Plasma-assisted nitriding and nitrocarburizing of steel and other ferrous alloys, In: Mittemeijer E.J., Somers M.A.J., editors. Thermochemical Surface Engineering of Steels Improving Materials Performance, Woodhead Publishing Series in Metals and Surface Engineering, 2015, no. 62, s. 413–457.
  • [16] El-Hossary F.M., Negm N.Z., Abd El-Rahman A.M., Raaif M., Seleem A.A., Abd El-Moula A.A., Tribo-mechanical and electromechanical properties of plasma nitriding titanium, Surface & Coatings Technology 2015, no. 276, s. 658-667.
  • [17] She D., Yue W., Fu Z., Wang C., Yang X., Liu J., Effects of nitriding temperature on microstructures and vacuum tribological properties of plasma-nitrided titanium, Surface & Coatings Technology 2015, no. 264, s. 32-40.
  • [18] Kulka M., Michalski J., Panfil D., Wach P., Laser heat treatment of gas-nitrided layer produced on 42CrMo4 steel, Inżynieria Materiałowa 5(207), (2015), 301-305.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48ce75a6-8b76-431a-81b2-d74eb43aa116
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.