PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Enzymatic hydrolysis of pretreated lignocellulosic feedstocks improved by membrane Separation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the synergistic action of used enzymes the cellulose and hemicelluloses chains are digested into fermentable monosaccharides. It is known that the process efficiency can be improved by the separation of reaction end-products that are cellulase inhibitors. This work investigated the efficiency of enzymatic hydrolysis of corn stover and poplar wood biomass in a stirred dead-end membrane bioreactor, enabling continuous separation of end-products. Four UF membranes with different molecular weight cut-offs were tested, and PES 5 kDa was chosen as the most suitable. To pretreat biomass before hydrolysis, soaking in aqueous ammonia (SAA) and liquid hot water (LHW) methods were compared. The LHW treatment led to relatively high glucose contents (up to 73.7%). In turn, the SAA method led to high xylose contents up to 23.5%. In general, remarkable improvements (up to 72.6%) were observed in monosaccharides contents in hydrolyzates after the membrane bioreactor process. Only in the case of corn stover after SAA pretreatment were the reaction efficiencies in the membrane bioreactor similar to those obtained in batch mode, with an improvement of 4.3%.
Słowa kluczowe
Rocznik
Strony
Art. no. 199839
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
  • Warsaw University of Technology, Poland
  • Warsaw University of Life Sciences, Poland
  • Warsaw University of Life Sciences, Poland
  • Warsaw University of Life Sciences, Poland
Bibliografia
  • Akus-Szylberg F., Antczak A., Bytner O., Radomski A.,Krajewski K., Zawadzki J. [2018]: The effect ofpre-treatment of corn stover with liquid hot water onits chemical composition and enzymatic hydrolysis.Przemysł Chemiczny 97[11]: 1866-1869.
  • Akus-Szylberg F., Antczak A., Zawadzki J. [2020]: Hydrothermalpretreatment of poplar (Populus trichocarpa)wood and its impact on chemical composition and enzymatichydrolysis yield. Drewno 63[206]: 5-18.
  • Akus-Szylberg F., Antczak A., Zawadzki J. [2021a]: Effectof soaking aqueous ammonia pretreatment on chemicalcomposition and enzymatic hydrolysis of corn stover.Annals of Warsaw University of Life Sciences, Forestryand Wood Technology 115: 29-36.
  • Akus-Szylberg F., Antczak A., Zawadzki J. [2021b]: Effectsof soaking aqueous ammonia pretreatment on selectedproperties and enzymatic hydrolysis of poplar (Populustrichocarpa) wood. Bioresources 16[3]: 5618-5627.
  • Alvira P., Tomas-Pejo E., Ballesteros M., Negro M.J. [2010]:Pretreatment technologies for an efficient bioethanolproduction process based on enzymatic hydrolysis: a review.Bioresource Technology 101: 4851-4861.
  • Antczak A., Dąbkowska-Susfał K., Walkowiak M.,Witczak M., Szadkowski J., Cichy W., Radomski A., Zawadzki J. [2023]: The influence of selected physico-chemical pretreatment methods on chemical compositionand enzymatic hydrolysis yield of fast-growingpoplar wood and corn stover. Drewno 66[211]: 1-13.
  • Antczak A., Marchwicka M., Szadkowski J., Drożdżek M.,Gawron J., Radomski A., Zawadzki J. [2018]: Sugarsyield obtained after acid and enzymatic hydrolysis offast-growing poplar wood species. BioResources 13[4]:8629-8645.
  • Antczak A., Szadkowski J., Szadkowska D., Zawadzki J.[2022]: Assessment of the effectiveness of liquid hotwater and steam explosion pretreatments of fast-growingpoplar (Populus trichocarpa) wood. Wood Science andTechnology 56: 87-109.
  • Bernacki M.J., Mielecki J., Antczak A., Drożdżek M., Witoń D., Dąbrowska-Bronk J., Gawroński P., Burdiak P., Marchwicka M., Rusaczonek A., Dąbkowska-Susfał K., Strobel W.R., Mellerowicz E.J., Zawadzki J.,Szechyńska-Hebda M., Karpiński S. [2023]: Biotechnological Potential of the Stress Response and Plant Cell Death Regulators Proteins in the Biofuel Industry.Cells 12: 2018.
  • Conidi C., Mazzei R., Cassano A., Giorno L. [2014]: Integratedmembrane system for the production of phytotherapicsfrom olive mill wastewaters. Journal of MembraneScience 454: 322-329.
  • Dąbkowska-Susfał K. [2023]: Influence of Tween 80 onenzymatic hydrolysis of corn straw integrated withmembrane separation. Industrial Crops and Products203: 117132.
  • Dąbkowska-Susfał K., Sobieszuk P., Lipińska J., KołtuniewiczA.B. [2024]: Hydrodynamic studies of innovativemembrane reactor for enzymatic hydrolysis of lignocellulosicwaste. Biotechnology Journal 19: 2300602.
  • El-Zawawy W.K., Ibrahim M.M., Abdel-Fattah Y.R., SolimanN.A., Mahmoud M.M. [2011]: Acid and enzymehydrolysis to convert pretreated lignocellulosic materialsinto glucose for ethanol production. CarbohydratePolymers 84[3]: 865-871.
  • Gan Q., Allen S.J., Taylor G. [2002]: Design and operationof an integrated membrane reactor for enzymaticcellulose hydrolysis. Biochemical Engineering Journal12: 223-229.
  • Gao J., Yang X., Wan J., He Y., Chang C., Ma X., Bai J.[2016]: Delignification kinetics of corn stover with aqueousammonia soaking pretreatment. BioResources 11[1]:2403-2416.
  • Hsieh C.W.C., Cannella D., Jørgensen H., Felby C., ThygesenL.G. [2014]: Cellulase inhibition by high concentrationsof monosaccharides. Journal of Agricultural andFood Chemistry 62: 3800-3805.
  • Isikgor F.H., Becer C.R. [2015]: Lignocellulosic biomass:a sustainable platform for the production of bio-basedchemicals and polymers. Polymer Chemistry 6: 4497-4559.
  • Jung W., Sharma-Shivappa R., Kolar P. [2019]: Effect ofenzyme interaction with lignin isolated from pretreatedMiscanthus × giganteus on cellulolytic efficiency. Processes7: 755.
  • Kołtuniewicz A.B., Dąbkowska K. [2016]: Biorefineries– factories of the future. Chemical and Process Engineering37 [1]: 109-119.
  • Krutul D., Szadkowski J., Výbohová E., Kučerová V., ČabalováI., Antczak A., Szadkowska D., Drożdżek M., Zawadzki J.[2024]: Effect of steam explosion pretreatment on chosensaccharides yield and cellulose structure from fast‑growingpoplar (Populus deltoides × maximowiczii) wood. WoodScience and Technology 58: 441-458.
  • Lesar B., Humar M., Hora G., Hachmeister P., SchmiedlD., Pindel E., Siika-aho M., Liitiä T. [2016]: Utilizationof recycled wood in biorefineries: preliminary results ofsteam explosion and ethanol/water organosolv pulpingwithout a catalyst. European Journal of Wood and WoodProducts 74: 711-723.
  • Li X., Lu J., Zhao J., Qu Y. [2014]: Characteristics of cornstover pretreated with liquid hot water and fed-batchsemi-simultaneous saccharification and fermentationfor bioethanol production. PLoS One 9: e95455.
  • Li W., Walz J.Y. [2014]: Porous Nanocomposites with IntegratedInternal Domains: Application to SeparationMembranes. Scientific Reports 4: 4418.
  • Mangan D., Cornaggia C., McKie V., Kargelis T., McClearyB.V. [2016]: A novel automatable enzyme-coupled colorimetricassay for endo-1,4-β-glucanase (cellulase).Analytical and Bioanalytical Chemistry 408: 4159-4168.
  • Rathour R.K., Behl M., Dhashmana K., Sakhuja D.,Ghai H., Sharma N., Meena K.R., Bhatt A.K., BhatiaR.K. [2023]: Non-food crops derived lignocellulosebiorefinery for sustainable production of biomaterials,biochemicals and bioenergy: A review on trends andtechniques. Industrial Crops and Products 204: 117220.
  • Reshmy R., Philip E., Madhavan A., Sirohi R., PugazhendhiA., Binod P., Awasthi, M.K., Vivek N., Kumar V.,Sindhu R. [2022]: Lignocellulose in future biorefineries:Strategies for cost-effective production of biomaterialsand bioenergy. Bioresource Technology 344: 126241.
  • Smith B.T., Knutsen J.S., Davis R.H. [2010]: Empiricalevaluation of inhibitory product, substrate, and enzymeeffects during the enzymatic saccharification of lignocellulosicbiomass. Applied Biochemistry and Biotechnology161: 468-482.
  • Wyman C.E., Balan V., Dale B.E., Elander R.T., Falls M.,Hames B., Holtzapple M.T., Ladisch M.R., Lee Y.Y.,Mosier N., Pallapolu V.R., Shi J., Thomas S.R., WarnerR.E. [2011]: Comparative data on effects of leadingpretreatments and enzyme loadings and formulations onsugar yields from different switchgrass sources. BioresourceTechnology 102: 11052-11062.
  • Yang S., Ding W., Chen H. [2006]: Enzymatic hydrolysis ofrice straw in a tubular reactor coupled with UF membrane.Process Biochemistry 41: 721-725.
  • Yang S., Ding W., Chen H. [2009]: Enzymatic hydrolysisof corn stalk in a hollow fiber ultrafiltration membranereactor. Biomass and Bioenergy 33: 332-336.
  • Zborowska M., Waliszewska H., Waliszewska B., BorysiakS., Brozdowski J., Stachowiak-Wencek A. [2022]:Conversion of Carbohydrates in Lignocellulosic Biomassafter Chemical Pretreatment. Energies 15: 254.
  • Zhang M., Su R., Li Q., Qi W., He Z. [2011]: Enzymaticsaccharification of pretreated corn stover in a fedbatchmembrane bioreactor. BioEnergy Research 4:134-140.
  • Zheng Y., Zhongli P., Ruihong Z. [2009]: Overview of biomasspretreatment for cellulosic ethanol production.International Journal of Agricultural and BiologicalEngineering 2[3]: 51-69.
  • Zoghlami A., Paës G. [2019]: Lignocellulosic Biomass: UnderstandingRecalcitrance and Predicting Hydrolysis.Frontiers in Chemistry 7: 874.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48c9d099-d1ef-4547-99d4-f340184237a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.