PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Error Analysis of Sound Source Directivity Interpolation Based on Spherical Harmonics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Precise measurement of the sound source directivity not only requires special equipment, but also is time-consuming. Alternatively, one can reduce the number of measurement points and apply spatial interpolation to retrieve a high-resolution approximation of directivity function. This paper discusses the interpolation error for different algorithms with emphasis on the one based on spherical harmonics. The analysis is performed on raw directivity data for two loudspeaker systems. The directivity was measured using sampling schemes of different densities and point distributions (equiangular and equiareal). Then, the results were interpolated and compared with these obtained on the standard 5° regular grid. The application of the spherical harmonic approximation to sparse measurement data yields a mean error of less than 1 dB with the number of measurement points being reduced by 89%. The impact of the sparse grid type on the retrieval error is also discussed. The presented results facilitate optimal sampling grid choice for low-resolution directivity measurements.
Rocznik
Strony
95--104
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Department of Robotics and Mechatronics, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
  • Department of Robotics and Mechatronics, AGH University of Science and Technology, Kraków, Poland
Bibliografia
  • 1. CLF Group (2004), A common loudspeaker file format, SynAudCon Newsletter, 32 (4): 14-17.
  • 2. AES56-2008 (2008), AES standard on acoustics – Sound source modeling – Loudspeaker polar radiation measurements.
  • 3. Ben-Hur Z., Alon D. L., Rafaely B., Mehra R. (2019), Loudness stability of binaural sound with spherical harmonic representation of sparse head-related transfer functions, EURASIP Journal on Audio and Music Processing, 2019 (1): 5, doi: 10.1186/s13636-019-0148-x.
  • 4. Brinkmann F., Weinzierl S. (2018), Comparison of head-related transfer functions pre-processing techniques for spherical harmonics decomposition, [in:] Proceedings of the AES International Conference on Audio for Virtual and Augmented Reality, Paper P9-3, http://www.aes.org/e-lib/browse.cfm?elib=19683.
  • 5. Cuevas-Rodriguez M. et al. (2019), 3D tune-in toolkit: An open-source library for real-time binaural spatialisation, PLoS ONE, 14 (3): e0211899, doi: 10.1371/journal.pone.0211899.
  • 6. Duan W., Kirby R. (2012), A hybrid finite element approach to modeling sound radiation from circular and rectangular ducts, The Journal of the Acoustical Society of America, 131 (5): 3638-3649, doi: 10.1121/1.3699196.
  • 7. Evans M. J., Angus J. A. S., Tew A. I. (1998), Analyzing head-related transfer function measurements using surface spherical harmonics, The Journal of the Acoustical Society of America, 104 (4): 2400-2411, doi: 10.1121/1.423749.
  • 8. Fastl H., Zwicker E. (2006), Psychoacoustics: Facts and Models, Springer-Verlag.
  • 9. Felis J., Flach A., Kamisiński T. (2012), Testing of a device for positioning measuring microphones in anechoic and reverberation chambers, Archives of Acoustics, 37 (2): 245-250, doi: 10.2478/v10168-012-0032-5.
  • 10. Gamper H. (2013), Head-related transfer function interpolation in azimuth, elevation, and distance The Journal of the Acoustical Society of America, 134 (6): EL547-EL553, doi: 10.1121/1.4828983.
  • 11. Hargreaves J. A., Rendell L. R., Lam Y. W. (2019), A framework for auralization of boundary element method simulations including source and receiver directivity. The Journal of the Acoustical Society of America, 145 (4): 2625-2637, doi: 10.1121/1.5096171.
  • 12. Joseph P., Nelson P. A., Fisher M. J. (1999), Active control of fan tones radiated from turbofan engines. I. External error sensors, The Journal of the Acoustical Society of America, 106 (2): 766-778, doi: 10.1121/1.427095.
  • 13. Leishman T. W., Rollins S., Smith H. M. (2006), An experimental evaluation of regular polyhedron loudspeakers as omnidirectional sources of sound, The Journal of the Acoustical Society of America, 120 (3): 1411-1422, doi: 10.1121/1.2221552.
  • 14. Leopardi P. (2005), Recursive zonal equal area sphere partitioning toolbox, Matlab Software Package Available via SourceForge, http://eqsp.sourceforge.net.
  • 15. Leopardi P. (2006), A partition of the unit sphere into regions of equal area and small diameter, Electronic Transactions on Numerical Analysis, 25: 309-327.
  • 16. Lidoine S., Batard H., Troyes S., Delnevo A., Roger M. (2001), Acoustic radiation modelling of aeroengine intake comparison between analytical and numerical methods, [in:] 7th AIAA/CEAS Aeroacoustics Conference and Exhibit, doi: 10.2514/6.2001-2140.
  • 17. Mobley F. (2015), Interpolation of aircraft source noise directivity patterns modeled by spherical harmonics, [in:] Proceedings of Meetings on Acoustics, Vol. 25, doi: 10.1121/2.0000193.
  • 18. Nishino T., Kajita S., Takeda K., Itakura F. (1999), Interpolating head related transfer functions in the median plane, [in:] IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 167-170, IEEE, doi: 10.1109/aspaa.1999.810876.
  • 19. Pasqual A. M. (2014), Spherical harmonic analysis of the sound radiation from omnidirectional loudspeaker arrays, Journal of Sound and Vibration, 333 (20): 4930-4941, doi: 10.1016/j.jsv.2014.05.006.
  • 20. Politis A. (2016), Microphone array processing for parametric spatial audio techniques, Doctoral dissertation, Aalto University.
  • 21. Rayleigh J. (1945), The Theory of Sound, Number 1 in The Theory of Sound, 2nd ed., Macmillan.
  • 22. Shabta N. R., Behler G., Vorländer M., Weinzierl S. (2017), Generation and analysis of an acoustic radiation pattern database for forty-one musical instruments, The Journal of the Acoustical Society of America, 141 (2): 1246-1256, doi: 10.1121/1.4976071.
  • 23. Sinayoko S., Joseph P., McAlpine A. (2010), Multimode radiation from an unflanged, semi-infinite circular duct with uniform flow, The Journal of the Acoustical Society of America, 127 (4): 2159-2168, doi: 10.1121/1.3327814.
  • 24. Snakowska A., Jurkiewicz J. (2010), Efficiency of energy radiation from an unflanged cylindrical duct in case of multimode excitation, Acta Acustica united with Acustica, 96 (3): 416-424, doi: 10.3813/AAA.918294.
  • 25. Snakowska A., Jurkiewicz J., Gorazd Ł. (2017), A hybrid method for determination of the acoustic impedance of an unflanged cylindrical duct for multimode wave, Journal of Sound and Vibration, 396: 325-339, doi: 10.1016/j.jsv.2017.02.040.
  • 26. Sneeuw N. (1994), Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective, Geophysical Journal International, 118 (3): 707-716, doi: 10.1111/j.1365-246X.1994.tb03995.x.
  • 27. Zhang W., Abhayapala T. D., Kennedy R. A., Duraiswami R. (2010), Insights into head-related transfer function: Spatial dimensionality and continuous representation, The Journal of the Acoustical Society of America, 127 (4): 2347-2357, doi: 10.1121/1.3336399.
  • 28. Zhang W., Zhang M., Kennedy R. A., Abhayapala T. D. (2012), On high-resolution head-related transfer function measurements: An efficient sampling scheme, IEEE/ACM Transactions on Audio, Speech and Language Processing, 20 (2): 575-584, doi: 10.1109/TASL.2011.2162404.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48ba3195-46c5-4074-a878-8523984beb81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.