PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Geometric Structure, Convection, and Eddy on Sound Propagation in Acoustic Metamaterials with Turbulent Flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of reducing noise in transportation is an important research field to prevent accidents and to provide a civilised environment for people. A material that has recently attracted attention in research to reduce noise is acoustic metamaterial, and most of the research projects so far have been limited to the case of static media without flow. We have studied the sound transmission properties of the acoustic metamaterials with turbulent flow to develop the acoustic metamaterials that are used in transportation. In this paper, the effects of geometrical structure, convection, and eddy on sound propagation in the acoustic metamaterials with turbulent flow are investigated, and the relationships between them are analysed. The effects of convection and eddy reduce the resonant strength of the sound transmission loss resulting from the unique geometry of the acoustic metamaterials, but move the resonant frequencies to opposite directions. In addition, when the convective effect and the eddy effect of the airflow, as well as the intrinsic interaction effect generated from the unique geometrical structure of the acoustic metamaterials cannot be ignored, they exhibit competition phenomena with each other, resulting in a widening of the resonance peak. As a result, these three effects cause the shift of the resonance frequency of the sound transmission loss and the widening of the resonance peak. The results of this study show that even in the case of turbulent flow, the metamaterials can be used for transportation by properly controlling its geometric size and shape.
Rocznik
Strony
637--647
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Department of Physics, Kim Il Sung University Taesong District, Pyongyang, Democratic People’s Republic of Korea
autor
  • Department of Physics, Kim Il Sung University Taesong District, Pyongyang, Democratic People’s Republic of Korea
autor
  • Department of Physics, Kim Il Sung University Taesong District, Pyongyang, Democratic People’s Republic of Korea
  • Institute of Natural Sciences, Kim Il Sung University Taesong District, Pyongyang, Democratic People’s Republic of Korea
Bibliografia
  • 1. Ananthan V., Bernicke P., Akkermans R., Hu T., Liu P. (2020), Effect of porous material on trailing edge sound sources of a lifting airfoil by zonal overset-les, Journal of Sound and Vibration, 480: 115386, doi: 10.1016/j.jsv.2020.115386.
  • 2. Bok E., Park J.J., Choi H., Han C.K., Wright O.B., Lee S.H. (2018), Metasurface for water-to-air sound transmission, Physical Review Letters, 120(4): 044302, doi: 10.1103/PhysRevLett.120.044302.
  • 3. Brookea D.C., Umnova O., Leclaire P., Dupont T. (2020), Acoustic metamaterial for low frequency sound absorption in linear and nonlinear regimes, Journal of Sound and Vibration, 485: 115585, doi: 10.1016/j.jsv.2020.115585.
  • 4. Carpio A.R., Avallone F., Ragni D., Snellen M., van der Zwaag S. (2019), Mechanisms of broadband noise generation on metal foam edges, Physics of Fluids, 31(10): 105110, doi 10.1063/1.5121248.
  • 5. Chaitanya P., Joseph P., Ayton L.J. (2020), Leading edge profiles for the reduction of airfoil interaction noise, AIAA Journal, 58(3): 1118-1129, doi: 10.2514/1.J058456.
  • 6. Deuse M., Sandberg R.D. (2020), Different noise generation mechanisms of a controlled diffusion aerofoil and their dependence on Mach number, Journal of Sound and Vibration, 476: 115317 doi: 10.1016/j.jsv.2020.115317.
  • 7. Du L., Holmberg A., Karlsson M., Åbom M. (2016), Sound amplification at a rectangular t-junction with merging mean flows, Journal of Sound and Vibration, 367: 69-83, doi: 10.1016/j.jsv.2015.12.042.
  • 8. Fan L., Chen Z., Zhang S., Ding J., Li X., Zhang H. (2015), An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation, Applied Physics Letters, 106(15): 151908, doi: 10.1063/1.4918374.
  • 9. Gikadi J., Föller S., Sattelmayer T. (2014), Impact of turbulence on the prediction of linear aeroacoustic interactions: Acoustic response of a turbulent shear layer, Journal of Sound and Vibration, 333(24): 6548-6559, doi: 10.1016/j.jsv.2014.06.033.
  • 10. Gu Z., Gao H., Liu T., Li Y., Zhu J. (2020), Dopant-modulated sound transmission with zero index acoustic metamaterials, The Journal of the Acoustical Society of America, 148(3): 1636-1641, doi: 10.1121/10.0001962.
  • 11. Jiang X., Li Y., Zhang L.K. (2017), Thermoviscous effects on sound transmission through a metasurface of hybrid resonances, The Journal of the Acoustical Society of America, 141(4): EL363-EL368, doi: 10.1121/1.4979682.
  • 12. Jung J.W., Kim J.E., Lee J.W. (2018), Acoustic metamaterial panel for both uid passage and broadband soundproofing in the audible frequency range, Applied Physics Letters, 112(4): 041903, doi: 10.1063/1.5004605.
  • 13. Kundu P.K., Cohen I.M., Dowling D. (2012), Fluid mechanics, 5th ed., pp. 564-571, Elsevier, doi: 10.1016/C2009-0-63410-3.
  • 14. Kusano K., Yamada K., Furukawa M. (2020), Aeroacoustic simulation of broadband sound generated from low-Mach-number flows using a lattice Boltzmann method, Journal of Sound and Vibration, 467: 115044, doi: 10.1016/j.jsv.2019.115044.
  • 15. Li Y., Assouar B. M. (2016), Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Applied Physics Letters, 108(6): 063502, doi: 10.1063/1.4941338.
  • 16. Lu K., Wu J., GuanD., Gao, N., Jing L. (2016), A lightweight low-frequency sound insulation membrane-type acoustic metamaterial, AIP Advances, 6(2): 025116, doi: 10.1063/1.4942513.
  • 17. Menter F. (1994), Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, 32(8): 1598-1605, doi: 10.2514/3.12149.
  • 18. Nardini M., Sandberg R.D., Schlanderer S.C. (2020), Computational study of the effect of structural compliance on the noise radiated from an elastic trailing-edge, Journal of Sound and Vibration, 485: 115533, doi: 10.1016/j.jsv.2020.115533.
  • 19. Ostashev V.E., Wilson D.K. (2016), Acoustics in Moving Inhomogeneous Media, 2ed., pp. 27-62, Taylor and Francis, doi: 10.1201/b18922.
  • 20. Park J.J., Park C.M., Lee K.J.., Lee, S.H. (2015), Acoustic superlens using membrane-based metamaterials, Applied Physics Letters, 106(5): 051901, doi: 10.1063/1.4907634.
  • 21. Pierce A.D. (2019), Acoustics: An Introduction to Its Physical Principles and Applications, 3rd ed., pp. 68-70, Springer, doi: 10.1007/978-3-030-11214-1.
  • 22. Qu S., Sheng P. (2020), Minimizing indoor sound energy with tunable metamaterial surfaces, Physical Review Applied, 14(3): 034060, doi: https://link.aps.org/doi/10.1103/PhysRevApplied.14.034060.
  • 23. Romani G., Ye Q.Q., Avallone F., Ragni D., Casalino D. (2020), Numerical analysis of fan noise for the NOVA boundary-layer ingestion configuration, Aerospace Science and Technology, 96: 105532, doi: 10.1016/j.ast.2019.105532.
  • 24. Su H., Zhou X., Xu X., Hu G. (2014), Experimental study on acoustic subwavelength imaging of holey-structured metamaterials by resonant tunnelling, The Journal of the Acoustical Society of America, 135(4): 1686-1691, doi: 10.1121/1.4868395.
  • 25. Sui N., Yan X., Huang T.Y., Xu J., Yuan F.G., Jing Y. (2015), A lightweight yet sound-proof honeycomb acoustic metamaterial, Applied Physics Letters, 106(17): 171905, doi: 10.1063/1.4919235.
  • 26. Szőke M., Fiscaletti D., Azarpeyvand M. (2018), Effect of inclined transverse jets on trailing-edge noise generation, Physics of Fluids, 30(8): 085110, doi: 10.1063/1.5044380.
  • 27. Szőke M., Fiscaletti D., Azarpeyvand M. (2020), Uniform flow injection into a turbulent boundary layer for trailing edge noise reduction, Physics of Fluids, 32(8): 085104, doi: 10.1063/5.0013461.
  • 28. Tang H., Lei Y.L., Li X.Z. (2019), An acoustic source model for applications in low Mach number turbulent flows, such as a large-scale wind turbine blade, Energies, 12(23): 4596, doi: https://www.mdpi.com/1996-1073/12/23/4596.
  • 29. Wang X., Zhao H., Luo X., Huang Z. (2016), Membrane-constrained acoustic metamaterials for low frequency sound insulation, Applied Physics Letters, 108(4): 041905, doi: 10.1063/1.4940717.
  • 30. Wang Y., Thompson D., Hu Z. (2019), Effect of wall proximity on the flow over a cube and the implications for the noise emitted, Physics of Fluids, 31(7): 077101, doi: 10.1063/1.5096072.
  • 31. Yang Z.J. et al. (2015), Topological acoustics, Physical Review Letters, 114(11): 114301, doi: 10.1103/PhysRevLett.114.114301.
  • 32. Yao H., Davidson L. (2019), Vibro-acoustics response of a simplified glass window excited by the turbulent wake of a quarter-spherocylinder body, The Journal of the Acoustical Society of America, 145(5): 3163-3176, doi: 10.1121/1.5109548.
  • 33. Zheng M.Y., Park C., Liu X.N., Zhu R., Hu G.K., Kim Y.Y. (2020), Non- resonant metasurface for broadband elastic wave mode splitting, Applied Physics Letters, 116(17): 171903, doi: 10.1063/5.0005408.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48b18ec8-e999-498f-ae42-d878e18593c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.