PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Degradation of toluene using UV/hydrogen peroxide process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Toluene in wastewater is volatile and difficult to degrade, and the longer it stays in the water, the higher is the risk. An advanced oxidation process (AOPs) has been used to degrade toluene rapidly and efficiently in wastewater by using ultraviolet light and hydrogen peroxide. Toluene in solution (initial concentration – 180 mg/dm3) with hydrogen peroxide (H2O2 dose – 2022 mg/dm3) was almost decomposed within 150 min. pH as well as the presence of various ions in waste water did not affect the degradation process. However, under strongly acidic conditions (pH less than 3), the chloride ions reduced the degradation efficiency of toluene. Based on the UV spectrophotometer and GC-MS analyses, the degradation pathways were observed: first, the methyl group was oxidized leading to the generation of benzoic acid, the benzene ring was subsequently opened by the action of hydroxyl radical, followed by the gradual decomposition of the intermediate products into small molecules such as water and carbon dioxide.
Rocznik
Strony
5--15
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • School of Environmental Science and Engineering, Shandong University, Qingdao Shandong, China
autor
  • School of Environmental Science and Engineering, Shandong University, Qingdao Shandong, China
autor
  • School of Environmental Science and Engineering, Shandong University, Qingdao Shandong, China
autor
  • Shandong Taihe Water Treatment Technologies Co., Ltd., Zaozhuang, Shandong, China
  • School of Environmental Science and Engineering, Shandong University, Qingdao Shandong, China
Bibliografia
  • [1] DALGAARD M., HOSSAINI A., HOUGAARD K.S., HASS U., LADEFOGED O., Developmental toxicity of toluene in male rats. Effects on semen quality, testis morphology, and apoptotic neurodegeneration, Arch. Toxicol., 2001, 75, 103–109.
  • [2] LONG J., SUN W., WU W., LI J., ZHOU M., Effects of toluene on soluble microbial products in UASB, Environ. Prot. Chem. Ind., 2014, 34, 105–109.
  • [3] JARANGDET T., PRATUMYOT K., SRIKITTIWANNA K., DUNGCHAI W., MINGVANISH W., TECHAKRIENGKRAI I., SUKWATTANASINITT M., NIAMNONT N., A fluorometric paper-based sensor array for the discrimination of volatile organic compounds (VOCs) with novel salicylidene derivatives, Dyes Pigm., 2018, 159, 378–383.
  • [4] HANDA M., LEE Y., SHIBUSAWA M., TOKUMURA M., KAWASE Y., Removal of VOCs in waste gas by the photo-Fenton reaction. Effects of dosage of Fenton reagents on degradation of toluene gas in a bubble column, J. Chem. Techn. Biotechn., 2012, 88, 88–97.
  • [5] WANG Y., JIANG S., LIU F., ZHAO C., ZHAO D., LI X., Study on preparation and toluene removal of BiOI/Bi2WO6/ACF photocatalyst, Appl. Surf. Sci., 2019, 488, 161–169.
  • [6] DAVIDIDOU K., NELSON R., MONTEAGUDO J.M., DURÁN A., EXPÓSITO A.J., CHATZISYMEON E., Photocatalytic degradation of bisphenol-A under UV-LED, blacklight and solar irradiation, J. Clean. Prod., 2018, 203, 13–21.
  • [7] GAO Y.-Q., GAO N.-Y., CHU W.-H., ZHANG Y.-F., ZHANG J., YIN D.-Q., UV-activated persulfate oxidation of sulfamethoxypyridazine. Kinetics, degradation pathways and impact on DBP formation during subsequent chlorination, Chem. Eng. J., 2019, 370, 706–715.
  • [8] MIKLOS D.B., REMY C., JEKEL M., LINDEN K.G., DREWES J.E., HUBNER U., Evaluation of advanced oxidation processes for water and wastewater treatment. A critical review, Water Res., 2018, 139, 118–131.
  • [9] MOON B.R., KIM T.K., KIM M.K., CHOI J., ZOH K.D., Degradation mechanisms of microcystin-LR duringUV-B photolysis and UV/H2O2 processes. Byproducts and pathways, Chemosphere, 2017, 185, 1039–1047.
  • [10] LONG A., LEI Y., ZHANG H., Degradation of toluene by a selective ferrous ion activated persulfate oxidation process, Ind. Eng. Chem. Res., 2014, 53, 1033–1039.
  • [11] CATALDO F., GARCÍA-HERNÁNDEZ D.A., MANCHADO A., Toluene pyrolysis in an electric ARC. Products analysis, Full., Nanot., Carbon Nanostr., 2019, 27, 469–477.
  • [12] ZHOU W., GUAN Z., ZHAO M., LI J., Characteristics and mechanism of toluene removal from gas by novelty array double dielectric barrier discharge combined with TiO2/Al2O3 catalyst, Chemosphere,2019, 226, 766–773.
  • [13] REZAEE M., ASSADI Y., MILANI HOSSEINI M.R., AGHAEE E., AHMADI F., BERIJANI S., Determination oforganic compounds in water using dispersive liquid-liquid microextraction, J. Chromatogr. A, 2006,1116, 1–9.
  • [14] LIU Y., SHAO M., FU L., LU S., ZENG L., TANG D., Source profiles of volatile organic compounds (VOCs) measured in China. Part I, Atmos. Environ., 2008, 42, 6247–6260.
  • [15] LIU G., JI J., HUANG H., XIE R., FENG Q., SHU Y., ZHAN Y., FANG R., HE M., LIU S., YE X., LEUNG D.Y.C., UV/H2O2. An efficient aqueous advanced oxidation process for VOCs removal, Chem. Eng. J., 2017, 324, 44–50.
  • [16] LI C.S., DU A.L., DU A.Q., Influence of pH on hydroxyl radical scavenging ratio by gingerol, Trans Tech Publications Ltd., Stafa-Zurich 2013, 1265–1269.
  • [17] DEVI L.G., RAJU K.S.A., KUMAR S.G., RAJASHEKHAR K.E., Photo-degradation of di azo dye Bismarck Brown by advanced photo-Fenton process. Influence of inorganic anions and evaluation of recycling efficiency of iron powder, J. Taiwan Inst. Chem. E., 2011, 42, 341–349.
  • [18] KIBANOVA D., CERVINI-SILVA J., DESTAILLA015TS H., Efficiency of clay−TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant, Environ. Sci. Technol., 2009, 43, 1500–1506.
  • [19] BUSTILLO-LECOMPTE C.F., KAKAR D., MEHRVAR M., Photochemical treatment of benzene, toluene, ethylbenzene, and xylenes (BTEX) in aqueous solutions using advanced oxidation processes. Towards a cleaner production in the petroleum refining and petrochemical industries, J. Clean. Prod., 2018, 186, 609–617.
  • [20] VARANASI L., COSCARELLI E., KHAKSARI M., MAZZOLENI L.R., MINAKATA D., Transformations of dissolved organic matter induced by UV photolysis, Hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-based advanced oxidation processes, Water Res., 2018, 135, 22–30.
  • [21] TONG S.-P., YU S., GAO Y., MA C.-A., Effect of inorganic ions on the oxidative efficiency of Ti(IV)- -Catalyzed H2O2/O3 process in the pH range of 1.0 to 6.0, Ozone: Sci. Eng., 2013, 35, 359–365.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48ac4d71-53e6-4dec-9c61-f2729d7b8808
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.