PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Problems in solving fractional differential equations in a microcontroller implementation of an FOPID controller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article focuses on the fractional-order backward difference, sum, linear time-invariant equation analysis, and difficulties of the fractional calculus microcontroller implementation with regard to designing a fractional-order proportional integral derivative (FOPID) controller. In opposite to the classic proportional integral derivative (PID), the FOPID controller is defined by five independent parameters. Hence, it is more customizable and, potentially, more precise on condition that the values of fractional integration and differentiation orders are properly selected. However, a number of operations and the time required to calculate the output signal continuously increase. This can be a significant problem considering the limitations of a microcontroller, including memory size and a constant sampling time of the set-up analog-to-digital (ADC) converters. In the article, three solutions are considered, and results obtained in the experiments are presented.
Rocznik
Strony
565--577
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wz.
Twórcy
  • Lodz University of Technology Institute of Applied Computer Science Faculty of Electrical, Electronic, Computer and Control Engineering Stefanowskiego 18/22, 90-924 Łódź, Poland
  • Lodz University of Technology Institute of Applied Computer Science Faculty of Electrical, Electronic, Computer and Control Engineering Stefanowskiego 18/22, 90-924 Łódź, Poland
Bibliografia
  • [1] Fossard A.J., Normand-Cyrot D., Eds., Nonlinear Systems: Modelling and estimation, Chapman & Hall (1995).
  • [2] Podlubny I., Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of their Applications, Academic Press (1999).
  • [3] Miller K., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, Inc. (1993).
  • [4] Dziwiński T., BauerW., Baranowski J., Piątek P., Zagórowska M., Robust non-integer order controller for air heater, 19th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland (2014).
  • [5] Baranowski J., Bauer W., Zagórowska M., Piątek P., On Digital Realizations of Non-integer Order Filters, Circuits, Systems, and Signal Processing, vol. 35, no. 6, pp. 2083–2107 (2016).
  • [6] Petras I.,Vinagre B., Practical application of digital fractional-order controller to temperature control, Acta Montanistica Slovaca, vol. 7, no. 2, pp. 131–137 (2002).
  • [7] Kawala-Janik A., Podpora M., Gardecki A., Czuwara W., Bauer W., Baranowski J., Game Controller Based on Biomedical Signals, 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland (2015).
  • [8] Ostalczyk P., Brzeziński D., Duch P., Łaski M., Sankowski D., The variable, fractional-order discrete-time PD controller in the IISv1.3 robot arm control, Central European Journal of Physics, vol. 11, no. 6, pp. 750–759 (2013).
  • [9] Oustaloup A., Levron F., Mathieu B.,Nanot F.M., Frequency-BandComplex Noninteger Differentiator: Characterization and Synthesis, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 1, pp. 25–39 (2000).
  • [10] Maione G., Laguerre approximation of fractional systems, Electronics Letters, vol. 38, no. 20, pp. 1234–1236 (2002).
  • [11] Baranowski J., Bauer W., Zagórowska M., Dziwiński T., Piątek P., Time-domain Oustaloup approximation, 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland (2015).
  • [12] Dziwiński T., Piątek P., Baranowski J., Bauer W., Zagórowska M., On the Practical Implementation of Non-integer Order Filters, 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland (2015).
  • [13] Bauer W., Implementation of Non-integer PIDController for The ATmega 328P Micro-controller, 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland (2016).
  • [14] Podlubny I., Dorcak L., Kostial I., On Fractional Derivatives, Fractional-Order Dynamic Systems and PID-controllers, Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, California, USA pp. 4985–4990 (1997).
  • [15] Tepljakov A., Fractional-order Modeling and Control of Dynamic Systems, Springer Theses (2017).
  • [16] Ostalczyk P., Discrete Fractional Calculus: Applications in Control and Image Processing, World Scientific (2016).
  • [17] Astrom K., Hagglund T., PID controllers: Theory, design and tuning, Instrument Society of America (1995).
  • [18] Ostalczyk P., Duch P., Brzeziński D., Sankowski D., Order Functions Selection in the Variable-, Fractional-Order PID Controller, Advances in Modelling and Control of Non-integer Order Systems, Opole, Poland, pp. 159–170 (2014).
  • [19] Kilbas A., Srivastava H., Trujillo J., Theory and Applications of Fractional Differential Equations, Elsevier Science (2006).
  • [20] STMicroelectronics, STM32F745xx STM32F746xx. Datasheet – production data, STMicroelectronics (2015).
  • [21] Arm Limited, Compiler User Guide. Basic data types in ARM C and C++, http://www.keil.com/support/man/docs/armcc/armcc_chr1359125009502.htm., accessed November 2018.
  • [22] STMicroelectronics, AN4841, Application note: Digital signal processing for STM32 microcontrollers using CMSIS, STMicroelectronics (2018).
  • [23] Pololu H.P., 6V Motor with 48 CPR Encoder for 25D mm Metal Gearmotors (No Gearbox), https://www.pololu.com/product/2280, accessed November 2018.
  • [24] Lyons R.G., Understanding Digital Signal Processing, Prentice Hall (1996).
  • [25] STMicroelectronics, STM32L15xCC STM32L15xRC STM32L15xUC STM32L15xVC Datasheet – production data, STMicroelectronics (2017).
  • [26] Ziegler J., Nichols N., Optimum Settings for Automatic Controllers, Transactions of the A.S.M.E., vol. 64, pp. 759–768 (1942).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48abc510-145b-4308-85ec-6b8f16a225fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.