PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of Ti-Nb-Zr Alloys Combined Powder Metallurgy and Arc Melting Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Scientists and medics are still searching for new metallic materials that can be used in medicine, e.g., as material for implants. The following article proposes materials based on titanium with vital elements prepared by combined powder metallurgy and arc melting methods. Four compositions of Ti-28Ta-9Nb, Ti-28Ta-19Nb, Ti-28Ta-9Zr and Ti-28Ta-19Zr (wt.%) have been prepared. The tested material was thoroughly analyzed by X-ray diffraction and scanning electron microscopy. Qualitative phase analysis using X-ray diffraction showed the presence of two phases, α' and β titanium. In addition, a microhardness test was conducted, and the material was characterized in terms of corrosion properties. It was found that the corrosion resistance decreases with an increase of the β phase presence.
Twórcy
  • University of Silesia in Katowice, Institute of Materials Engineering, 75 Pułku Piechoty Str., 1 A, 41-500 Chorzów, Poland
  • University of Silesia in Katowice, Institute of Materials Engineering, 75 Pułku Piechoty Str., 1 A, 41-500 Chorzów, Poland
  • University of Silesia in Katowice, Institute of Materials Engineering, 75 Pułku Piechoty Str., 1 A, 41-500 Chorzów, Poland
  • University of Silesia in Katowice, Institute of Materials Engineering, 75 Pułku Piechoty Str., 1 A, 41-500 Chorzów, Poland
  • Silesian University of Technology, Faculty of Chemistry, 6 B. Krzywoustego Str., 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Chemistry, 6 B. Krzywoustego Str., 44-100 Gliwice, Poland
autor
  • Graduate, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty Street 1 A, 41-500 Chorzów, Poland
Bibliografia
  • [1] A.M. Khorasani, M. Goldberg, E.H. Doeven, G. Littlefair, Titanium in Biomedical Applications-Properties and Fabrication: A Review, J. Biomater. Tissue Eng. 5, 593-619 (2015). DOI: https://doi.org/10.1166/jbt.2015.1361
  • [2] Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, Y. Li, New developments of ti-based alloys for biomedical applications, Materials 7, 1709-1800 (2014). DOI: https://doi.org/10.3390/ma7031709
  • [3] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomater. 8, 3888-3903 (2012). DOI: https://doi.org/10.1016/j.actbio.2012.06.037
  • [4] M. Long, H.J. Rack, Titanium alloys in total joint replacement - a materials science perspective, Biomaterials 19 (18), 1621-1639 (1998). DOI: https://doi.org/10.1016/S0142-9612(97)00146-4
  • [5] K.J. Bozic, S.M. Kurtz, E. Lau, K. Ong, D.T.P. Vail, D.J. Berry, The epidemiology of revision total hip arthroplasty in the United States, J. Bone Joint Surg. Am. 91, 128-133 (2009). DOI: https://doi.org/10.2106/JBJS.H.00155
  • [6] J. Willis, S. Li, S.J. Crean, F.N. Barrak, Is titanium alloy Ti-6Al-4 V cytotoxic to gingival fibroblasts - A systematic review, Clin. Exp. Dent. Res. 7, 1037-1044 (2021). DOI: https://doi.org/10.1002/CRE2.444
  • [7] K. Wang, The use of titanium for medical applications in the USA, Materials Science and Engineering: A213 (1-2), 134-137 (1996). DOI: https://doi.org/10.1016/0921-5093(96)10243-4
  • [8] S. Rao, T. Ushida, T. Tateishi, Y. Okazaki, S. Asao, Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells, Biomed. Mater. Eng. 6, 79-86 (1996). DOI: https://doi.org/10.3233/BME-1996-6202
  • [9] K.L. Wapner, Implications of metallic corrosion in total knee arthroplasty, Clin. Orthop. Relat. Res. 271, 12-20 (1991).
  • [10] I. Matuła, G. Dercz, M. Zubko, J. Maszybrocka, J. Jurek-Suliga, S. Golba, I. Jendrzejewska, Microstructure and porosity evolution of the Ti-35Zr biomedical alloy produced by elemental powder metallurgy, Materials 13 (20), 1532 (2020). DOI: https://doi.org/10.3390/ma13204539
  • [11] T.B. Massalski, H. Okamoto, P.R. Subramanian, B. Massalski, L. Thaddeus, Binary Alloy Phase Diagrams, 2nd Editio, ASM International, 1990.
  • [12] J. Breme, V. Wadewitz, Comparison of titanium-tantalum and titanium-niobium alloys for application as dental implants, Int. J. Oral Maxillofac. Implants. 4, 113-118 (1989).
  • [13] Y. Guo, K. Georgarakis, Y. Yokoyama, A.R. Yavari, On the mechanical properties of TiNb based alloys, J. Alloys Compd. 571, 25-30 (2013). DOI: https://doi.org/10.1016/j.jallcom.2013.03.192
  • [14] J.M. Cordeiro, T. Beline, A.L.R. Ribeiro, E.C. Rangel, N.C. da Cruz, R. Landers, L.P. Faverani, L.G. Vaz, L.M.G. Fais, F.B. Vicente, C.R. Grandini, M.T. Mathew, C. Sukotjo, V.A.R. Barão, Development of binary and ternary titanium alloys for dental implants. Dent. Mater. 33, 1244-1257 (2017). DOI: https://doi.org/10.1016/j.dental.2017.07.013
  • [15] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Design and mechanical properties of new i type titanium alloys for implant materials, Mater. Sci. Eng. A 243, 244-249 (1998).
  • [16] S. Miyazaki, K. Otsuka, Development of Shape Memory Alloys, ISIJ Int. 29, 353-377 (1989). DOI: https://doi.org/10.2355/isijinternational.29.353
  • [17] D.B. Wiles, R.A. Young, A new computer program for Rietveld analysis of X-ray powder diffraction patterns, J. Appl. Cryst. 14, 149-151 (1981).
  • [18] H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structure, J. Appl. Cryst. 3, 65-69 (1969).
  • [19] R.A. Young, The Rietveld method, 1993, Oxfor Univ. Press.
  • [20] C.M. Lee, C.P. Ju, J.H. Chern Lin, Structure-property relationship of cast Ti-Nb alloys, J. Oral Rehabil. 29, 314-322 (2002). DOI: https://doi.org/10.1046/J.1365-2842.2002.00825.X
  • [21] A.I. Mardare, A. Savan, A. Ludwig, A.D. Wieck, A.W. Hassel, A combinatorial passivation study of Ta-Ti alloys, Corros. Sci. 51, 1519-1527 (2009). DOI: https://doi.org/10.1016/J.CORSCI.2008.12.003
  • [22] G. Dercz, I. Matuła, M. Zubko, A. Kazek-Kęsik, J. Maszybrocka, W. Simka, J. Dercz, P. Świec, I. Jendrzejewska, Synthesis of porous Ti-50Ta alloy by powder metallurgy, Mater. Charact. 142, 124-136 (2018). DOI: https://doi.org/10.1016/j.matchar.2018.05.033
  • [23] W.F. Ho, W.K. Chen, S.C. Wu, H.C. Hsu, Structure, mechanical properties, and grindability of dental Ti-Zr alloys, J. Mater. Sci. Mater. Med. 19, 3179-3186 (2008). DOI: https://doi.org/10.1007/s10856-008-3454-x
  • [24] M. Takahashi, M. Kikuchi, O. Okuno, Grindability of Dental Cast Ti-Zr Alloys, Mater. Trans. 50 (4), 859-863 (2009). DOI: https://doi.org/10.2320/matertrans.MRA2008403
  • [25] M. Abdel-Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato, M. Morinaga, Phase stability change with Zr content in B-type Ti-Nb alloys, Scr. Mater. 57, 1000-1003 (2007). DOI: https://doi.org/10.1016/j.scriptamat.2007.08.003
  • [26] M. Abdel-Hady Gepreel, M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation, J. Mech. Behav. Biomed. Mater. 20, 407-415 (2013). DOI: https://doi.org/10.1016/j.jmbbm.2012.11.014
  • [27] G. Dercz, I. Matuła, M. Zubko, J. Dercz, Phase composition and microstructure of new Ti-Ta-Nb-Zr biomedical alloys prepared by mechanical alloying method, Powder Diffr. 32, S186-S192 (2017). DOI: https://doi.org/10.1017/S0885715617000045
  • [28] S. Ozan, J. Lin, Y. Li, C. Wen, New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications, J. Mech. Behav. Biomed. Mater. 75, 119-127 (2017). DOI: https://doi.org/10.1016/j.jmbbm.2017.07.011
  • [29] X. Tang, T. Ahmed, H.J. Rack, Phase transformations in ­Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys, J. Mater. Sci. 35, 1805-1811 (2000). DOI: https://doi.org/10.1023/A:1004792922155
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48a4b6b9-fe85-4917-922c-d29c7edc6bed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.