PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The philipsbornite–segnitite solid-solution series from Rędziny, eastern metamorphic cover of the Karkonosze granite (SW Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Supergene minerals of the philipsbornite–segnitite series, PbAl3(AsO4)(AsO3OH)(OH)6–PbFe3+3(AsO4) (AsO3OH)(OH)6, accompanied by carminite, PbFe3+2(AsO4)2(OH)2, were found in relics of hydrothermal quartz– chlorite–arsenopyrite veins, associated with subordinate polymetallic ores disseminated in contact zones of a dolomitic marble deposit at Rędziny, Western Sudetes, Poland, and recognized by means of electron microprobe and X-ray and electron-back-scattered diffraction (XRD and EBSD). Philipsbornite and segnitite, as the two minerals of the series, exhibit highly variable compositions, especially in terms of the range of Fe3+ Al3+ substitution at the G site, with a distinct gap between the values of 0.52 and 0.89 for the Fe/(Al+Fe) ratio; substitutions at the D and T sites are less important. In this respect, the minerals are almost identical with philipsbornite and segnitite, known from other localities. The gap might be a consequence of the limited miscibility of the end-members, but also might be attributed to crystallization under the changing and distinctly differing activities of Al3+ and Fe3+. The unit-cell parameters of philipsbornite, a = 7.1245(13) Ο, c = 17.0967(45) Ο, make the mineral comparable with philipsbornites from other occurrences. The EBSD analysis confirmed the rhombohedral structure of both minerals and the space group symmetry R-3m. The minerals crystallized in the sequence: philipsbornite -> segnitite -> carminite, which reflects (i) decreasing acidity in the oxidation zone, due to the leaching of sulphate ions and interaction of the solutions with a nearby dolomite lens, and (ii) varying activities of Al3+, Fe3+ and Pb2+ cations, mobilized by the solutions through interaction with the silicate host containing disseminated arsenopyrite and subordinate sulphides, up to complete Pb2+ depletion.
Rocznik
Strony
73--83
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, Mickiewicza 30, 30-059 Kraków, Poland
  • X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL60563, USA
autor
  • AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Bayliss, P., Kolitsch, U., Nickel, E. H. & Pring, A., 2010. Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 74: 919-927.
  • 2. Birch, W. D., Pring, A. & Gatehouse, B. M., 1992. Segnitite, PbFe3H(AsO4)2(OH)6, a new mineral in the lusungite group from Broken Hill, New South Wales, Australia. American Mineralogist, 77: 656-659.
  • 3. Brophy, G. P., Scott, E. S. & Snellgrove, R. A., 1962. Sulfate studies 2. Solid solution between alunite and jarosite. American Mineralogist, 47: 112-126.
  • 4. Cooper, M. A. & Hawthorne, F. C., 2012. Refinement of the crystal structure of zoned philipsbornite-hidalgoite from Tsumeb mine, Namibia, and hydrogen bonding in the D2+G3+3(T5+O4) (TO3OH)(OH)6 alunite structures. Canadian Mineralogist, 76: 839-849.
  • 5. David, J., Jahnsa, J., Novák, F. & Prachař, I., 1990. Philipsbornite from the Sn-W deposit Cínovec in Krušné hory Mts. (Czechoslovakia). Vestnik Ustredniho Ustavu Geologickeho, 65: 367-369.
  • 6. Duthou, J.-L., Couturie, J. P., Mierzejewski, M. P. & Pin, C., 1991. Age determination of the Karkonosze granite using the Rb-Sr isochrone whole-rock method. Przegląd Geologiczny, 36: 75-79. [In Polish, with English summary.]
  • 7. Gołębiowska, B., 1999. Strashimirite and cornwallite (copper arsenates) from Rędziny (Lower Silesia, Poland). Mineralogia Polonica, 30: 3-11.
  • 8. Gołębiowska, B., 2003. Okruszcowanie w złożu dolomitu „Rędziny” ze szczególnym uwzględnieniem minerałów strefy hipergenicznej. Unpublished Ph.D. Thesis, AGH-University of Science and Technology, Kraków, Poland. 249 pp. [In Polish.]
  • 9. Gołębiowska, B., 2005. Solid solution within vanadates and arsenates of the descloizite and the adelite groups from Rędziny (the Sudetes). Mineralogical Society of Poland, Special Papers, 25: 85-88.
  • 10. Gołębiowska, B., Pieczka, A. & Borkiewicz, O., 2008. Pb-(Al,Fe3+)-arsenate association from Rędziny, Rudawy Janowickie, Southwestern Poland. Mineralogia - Special Papers, 32: 69.
  • 11. Gołębiowska, B., Pieczka, A. & Franus, W., 1998. Conichalcite, clinotyrolite and tyrolite (Ca-Cu arsenates) from Rędziny (Lower Silesia, Poland). Mineralogia Polonica, 29(2): 13-22.
  • 12. Gołębiowska, B., Pieczka, A. & Franus, W., 2002. Ca-bearing phosphatian mimetite from Rędziny, Lower Silesia, Poland. Neues Jahrbuch für Mineralogie, Monatshefte, 2002(6), 1-13.
  • 13. Gołębiowska, B., Pieczka, A. & Franus, W., 2006. Olivenite- adamite solid solution from oxidation zone in Rędziny (West Sudetes, Poland). Mineralogia Polonica, 37(2): 97- 107.
  • 14. Gołębiowska, B., Pieczka, A. & Parafiniuk, J., 2012. Substitution of Bi for Sb and As in minerals of the tetrahedrite series from Rędziny, Lower Silesia, southwestern Poland. Canadian Mineralogist, 50: 267-279.
  • 15. Jambor, J. L. & Dutrizac, J. E., 1983. Beaverite-plumbojarosite solid solution. Canadian Mineralogist, 21: 101-113.
  • 16. Jansa, J., Novák, F., Pauliš, P. & Scharmová, M., 1998. Supergenní minerály Sn-W ložiska Cínovec v Krušných horách (Česká republika). Bulletin mineralogicko-petrografického oddělení Národního muzea v Praze, 6: 83-101. [In Czech.]
  • 17. Kolitsch, U., Bernhardt, F., Brandstätter, F. & Schachinger, T., 2010. Arsenopyrit, Bariopharmakosiderit, Baryt, Covellin, Jarosit, Karminit?, Mawbyit?, Mimetesit, Philipsbornit, Plumbojarosit, Pyrit, Pyromorphit, Schwefel, Segnitit, Sphalerit und Wulfenitvom Sperkerriegelbei Wiesmath, Bucklige Welt. Pp. 243-245. In: Niedermayr, G., Auer, Ch., Bernhard, F., Blass, G., Bojar, H.-P., Brandstätter, F., Hammer, V. M. F., Hirche, Th., Huber, P. A., Knobloch, G., Köller, R., Kolitsch, U., Löffler, E., Neuhold, F., Poeverlein, R., Postl, W., Prasnik, H., Pristacz, H., Schachinger, T., Strasser, M. & Walter, F. (eds), Neue Mineralfundeaus Österreich LIX. CarinthiaII, 200/120: 199-260.
  • 18. Kozdrój, W., 2003. Geotectonic evolution of the East Karkonosze crystalline complex. In: Ciężkowski, W., Wojewoda, J. & Żelaźniewicz, A. (eds), Sudety Zachodnie: Od wendu do czwartorzędu. Polskie Towarzystwo Geologiczne, WIND Wrocław, pp. 67-80. [In Polish, with English abstract.]
  • 19. Kusiak, M. A., Williams, I. S., Dunkley, D. J., Konecny, P., Słaby, E. & Martin, H. M., 2014. Monazite to the rescue: U-Th-Pb dating of the intrusive history of the composite Karkonosze pluton, Bohemian Massif. Chemical Geology, 364: 76-92.
  • 20. Marciniak, H., Diduszko, R. & Kozak, M., 2006. XRAYAN. Program do rentgenowskiej analizy fazowej, wersja 4.0.1. Koma, Warszawa.
  • 21. Mazur, S., 2003. Eastern envelope of the Karkonosze granite - cross-section of a Variscan suture zone. In: Cięzkowski, W., Wojewoda, J. & Żelaźniewicz, A. (eds), Sudety Zachodnie: Od wendu do czwartorzędu. Polskie Towarzystwo Geologiczne. WIND Wrocław, pp. 53-65. [In Polish, with English abstract.]
  • 22. Mazur, S. & Aleksandrowski, P., 2001. The Tepla(?) Saxothuringian suture in the Karkonosze-Izera Massif, western Sudetes, Central European Variscides. International Journal of Earth Sciences, 90: 341-360.
  • 23. Mazur, S., Aleksandrowski, P., Turniak, K. & Awdankiewicz, M., 2007 Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes - an overview. In: Kozłowski, A. & Wiszniewska, J. (eds), Granitoids in Poland. Archivum Minera- logiae Monograph, 1, Warszawa, pp. 59-87.
  • 24. Mikulski, S. Z., 2007. Metal ore potential of the parent magma of granite - the Karkonosze massif example. In: Kozłowski, A. & Wiszniewska, J. (eds) Granitoids in Poland, Archivum Mineralogiae Monograph, 1, Warszawa, pp. 123-145.
  • 25. Mills, S. J., Hattert, F., Nickel, E. H. & Ferraris, G., 2009. The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21: 1073-1080.
  • 26. Mochnacka, K., Oberc-Dziedzic, T., Mayer, W. & Pieczka, A., 2007 Ti remobilization and sulphide/sulphoarsenide mineralization in amphibolites: effect of granite intrusion (the Karkonosze-Izera Massif, SW Poland). Geological Quarterly, 52: 349-368.
  • 27. Mochnacka, K., Oberc-Dziedzic, T., Mayer, W., Pieczka, A. & Góralski, M., 2007. Occurrence of sulphides in Sowia Dolina near Karpacz (SW Poland) - an example of ore mineralization in the contact aureole of the Karkonosze granite. Mineralogia Polonica, 38(2): 185-207.
  • 28. Moura, M. A., Botelho, F. N. & de Mendonca, F. C., 2007. The indium-rich sulfides and rare arsenates of the Sn-In-mineralized Mangabeira A-type granite, Central Brazil. Canadian Mineralogist, 45: 485-496.
  • 29. Parafiniuk, J., 2003. Secondary bismuth and tellurium minerals from Rędziny (SW Poland). Mineralogia Polonica, 34(2): 3-14.
  • 30. Parafiniuk, J. & Domańska, J., 2002. Bismuth minerals from Rędziny (Rudawy Janowickie, SW Poland). Mineralogia Polonica, 33(2): 3-14.
  • 31. Pieczka, A., Gołębiowska, B. & Franus, W., 1998. Yukonite, a rare Ca-Fe arsenate from Rędziny (Sudetes, Poland). European Journal of Mineralogy, 10: 1367-1370.
  • 32. Pieczka, A., Gołębiowska, B. & Parafiniuk, J., 2009. Conditions of formation of polymetallic mineralization in the eastern envelope of the Karkonosze granite - the case of Rędziny. Canadian Mineralogist, 47: 765-786.
  • 33. Pin, C., Mierzejewski, M. P. & Duthou, J. L., 1987. Rb-Sr isochron age of the Karkonosze granite from the quarry Szklarska Poręba Huta and determination of its 87Sr/86Sr initial ratio. Przegląd Geologiczny, 35: 512-517. [In Polish, with English summary.]
  • 34. Pouchou, I. L. & Pichoir, F., (1985). “PAP” (phi-rho-z) procedure for improved quantitative microanalysis. In: Armstrong, I. T. (ed.), Microbeam Analysis. San Francisco Press, San Francisco, pp. 104-106.
  • 35. Rattray, K. J., Taylor, M. R., Bevan, D. J. M. & Pring, A., 1996. Compositional segregation and solid solution in the lead-dominant alunite-type minerals from Broken Hill, N.S.W. Mineralogica! Magazine, 60: 779-785.
  • 36. Schmetzer, K., Tremmel, G. & Medenbach, O., 1982. Philipsbornit, PbAl3H[(OH)6(AsO4)2] from Tsumeb, Namibia - a second occurrence. Neues Jahrbuch für Mineralogie, Monatshefte, 1982(6): 248-254. [In German, with English abstract.]
  • 37. Schwab, R., Goetz, C., Herold, H. & de Oliveira, N., 1991. Compouds of the crandallite type: Synthesis and properties of pure (calcium, strontium, barium, lead, lanthanum, cerium to europium) - arsenocrandallites. Neues Jahrbuch für Mineralogie, Monatshefte, 1991(3): 97-112.
  • 38. Scott, K. M., 1987. Solid solution in, and classification of, gossan-derived members of the alunite-jarosite family, northwest Queensland, Australia. American Mineralogist, 72: 178-187.
  • 39. Sejkora, J., Cejka, J. & Šrein, V., 2001a. Pb dominant members of crandalite group from Cínovec and Moldava deposits, Krušné hory Mts. (Czech Republic). Journal Czech Geological Society, 46: 53-67.
  • 40. Sejkora, J., Cejka, J., Šrein, V., Novotná, M. & Ederová, J., 1998. Minerals of plumbogummite-philipsbornite series from Moldava deposit, Krušné hory Mts., Czech Republic. Neues Jahrbuch für Mineralogie, Monatshefte, 1998(4): 145-163.
  • 41. Sejkora, J., Houzar, S. & Šrein, V., 2001b. Segnitite from Štěpánov nad Svratkou, Western Moravia. Acta Musei Moraviae, Scientiae Geologicae, 86: 85-92. [In Czech, with English abstract.]
  • 42. Sejkora, J., Plášil, J., Císařová, I., Škoda, R., Hloušek, J., Veselovský, F. & Jebavá, I., 2011. Interesting supergene Pb-rich mineral association from the Rovnost mining field, Jáchymov (St. Joachimsthal), Czech Republic. Journal of Geosciences, 56: 257-271.
  • 43. Sejkora, J., Škovíra, J., Cejka, J. & Plášil, J., 2009. Cu-rich members of the beudantite-segnitite series from Krupka ore district, the Krušné hory Mountains, Czech Republic. Journal of Geosciences, 54: 355-371.
  • 44. Słaby, E. & Martin, H., 2008. Mafic and felsic magma interactions in granites: the Karkonosze Hercynian pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49: 353-391.
  • 45. Smith, D. K., Roberts, A. C., Bayliss, P. & Liebau, F., 1998. A systematic approach to general and structure-type formulas for minerals and other inorganic phases. American Mineralogist, 83: 126-132.
  • 46. Walenta, K., Zwiener, M. & Dunn, P. J., 1982. Philipsbornite, a new mineral of the crandalite series from Dundas, Tasmania. Neues Jahrbuch für Mineralogie, Monatshefte, 1982(1): 1-5.
  • 47. Williams, P. A., 2005. Solutions in the “big laboratory”: Towards a model for metals at the Earth’s surface. Pure Applied Chemistry, 3: 643-651.
  • 48. Wolcysz, M., Urbanik, W., Mazgaj, S., Matuszewski, J., Andruszkiewicz, M. & Paszkowicz, W., 1993. DHNPowder Diffraction System. [Freeware version.]
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48a0140a-ed56-4e9c-bd5b-c9c45f369ee8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.