KATARZYNA KLIMEK*, AGATA PRZEKORA, MICHAŁ WÓJCIK, GRAŻYNA GINALSKA

DEPARTMENT OF BIOCHEMISTRY AND BIOTECHNOLOGY, MEDICAL UNIVERSITY OF LUBLIN, CHODZKI 1 STREET, 20-093 LUBLIN, POLAND *E-MAIL: KATARZYNA.KLIMEK@UMLUB.PL

[ENGINEERING OF BIOMATERIALS 148 (2018) 11]

Introduction

Beta-1,3-glucan (curdlan) is a non-toxic, bacterial, and linear polymer which possesses ability to form firm and flexible gel [1]. It was shown that thermally obtained curdlan gel is a suitable component of bioactive bone substitute [2] as well as biocompatible bone scaffold [3]. The aim of this study was to evaluate whether dialysis method for curdlan gelation is suitable for fabrication of biocompatible and bioactive bone scaffold.

Materials and Methods

The β -1,3-glucan/HA scaffold (glu/HA D) composed of 8 wt.% curdlan and 80 wt.% HA granules was made via dialysis method against CaCl₂ as described in details in Patent No. P.415936 [4]. Microstructure of glu/HA D scaffold was visualized by SEM. The cell-biomaterial interactions were assessed by evaluation of osteoblast (hFOB 1.19 and MC3T3-E1 cells) viability, adhesion, and proliferation in direct contact with glu/HA D scaffold. In turn, bioactivity of glu/HA D scaffold was estimated by measurement of changes in ionic composition of culture medium as well as by evaluation of *in vitro* apatite-forming ability after soaking in SBF.

Results and Discussion

The cytotoxicity assay demonstrated that the viability of both hFOB 1.19 and MC3T3-E1 cells seeded on glu/HA D scaffold was high and exceeded 70% in comparison with control cells (TABLE 1). Moreover, it was proved that number of cells grown on the scaffold increased with time indicating that glu/HA D material promoted osteoblast survival and proliferation (FIG. 1). As revealed by ion reactivity test (FIG. 2), glu/HA D scaffold released huge amount of Ca²⁺ ions to the culture medium, what positively affected cell-scaffold interaction and also apatite-forming ability in vitro. SEM analysis (FIG. 3) demonstrated the occurrence of characteristic crystals on the glu/HA D scaffold already on the 14th day of experiment. EDS analysis (FIG. 3) confirmed results obtained with SEM and showed that observed layer was composed of calcium phosphate with Ca/P ratio ranging from 1.7-1.72, which is similar to Ca/P ratio in hydroxyapatite (1.67).

TABLE 1. Viability of osteoblast cells seeded on glu/HA D scaffold (assessed after 24-h culture).

	Viability [% of control ± SD]
hFOB 1.19 cells	71.30 ±1.82
MC3T3-E1 cells	87.72 ± 6.31

FIG. 1. Evaluation of osteoblast cells growth on glu/HA D scaffold.

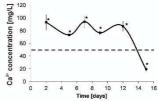


FIG. 2. Changes in Ca²⁺ concentration during 15-day of glu/HA D soaking in culture medium. Dotted line – ion concentration in fresh culture medium. *significantly different result compared to fresh medium (unpaired *t*-test, Graph Pad Prism 5).

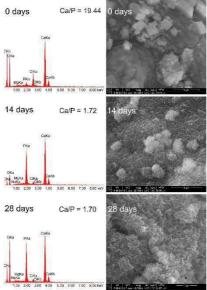


FIG. 3. Evaluation of bioactivity *in vitro* by SEM/EDS analysis during 28-day of glu/HA D soaking in SBF.

Conclusions

Within this study it was demonstrated that dialysis method for curdlan gelation may be successfully used for HA-based biomaterial fabrication. Produced glu/HA D scaffold releases huge amount of Ca²⁺ ions to the surrounding environment, what positively affects osteoblast viability, adhesion, and growth. Moreover, glu/HA D scaffold possesses ability to form apatite layer on its surface. Thus, considering biocompatible and bioactive properties of glu/HA D scaffold, it may be concluded that it is a promising biomaterial for bone tissue engineering.

Acknowledgments

The study was supported by Ministry of Science and Higher Education in Poland within MNmb1 and DS2 projects of Medical University of Lublin, Poland.

References

- [1] K. Klimek et. al., Carbohydr. Polym. 164 (2017) 170-178.
- [2] A. Belcarz et al., Centr. Eur. J. Biol. 8 (2013) 534-548.
- [3] A. Przekora *et al.*, Biomed. Mater. 11 (2016)1-14.
- [4] K. Klimek, A. Przekora, G. Ginalska, Patent Pending no. 415936 (February 2018 decision to grant a Patent).