PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling Soil Erosion Using RUSLE and GIS – A Case Study of Korifla Sub-Watershed (Central Morocco)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soil loss is a problem that contributes to land degradation in many countries and Morocco is no exception. Our study focuses on water erosion in Korifla, a sub-basin of the Bouregreg watershed in northern Morocco. The objective is to quantify erosion using the RUSLE method which is based on five factors: Runoff erosivity, soil erodibility, cover factor, topography and conservation practices. These are processed by remote sensing and a geographic information system. The soil loss map shows that on an area of 1838 km2, erosion is estimated to be between 0.00 t/ha/year and 27.61 t/ha/year. The cumulative effect of the factors R, K, LS, C, and P are both the origin of this erosion and its spatial distribution.
Słowa kluczowe
EN
erosion   GIS   RUSLE   LANDSAT   MNT   KORIFLA  
Twórcy
  • Laboratory of Geosciences, Department of Geology, Faculty of Sciences, University Ibn Tofail, Av. de L’Université, Kénitra, BP 133, Morocco
  • Laboratory of Natural Resources and Sustainable Development, Department of Geology, Faculty of Sciences, University Ibn Tofail, Av. de L’Université, Kénitra, BP 133, Morocco
  • Laboratory of Geosciences, Department of Geology, Faculty of Sciences, University Ibn Tofail, Av. de L’Université, Kénitra, BP 133, Morocco
  • Laboratory of Geosciences, Department of Geology, Faculty of Sciences, University Ibn Tofail, Av. de L’Université, Kénitra, BP 133, Morocco
Bibliografia
  • 1. El Jazouli A., A.B. 2017. Soil erosion modeled with USLE, GIS, and remote sensing: a case study of ikkour watershed in middle atlas (Morocco). Geosc. Lett., 4(1), 1–12. DOI: 10.1186/S40562-017- 0091-6
  • 2. Ouallali A., M.M. 2016. Evaluation and mapping of water erosion rates in the watershed of the arbaaayacha river (Western Rif, Northern Morocco). Bull. Inst. Sci. Rabat Sect. Sci. Terre Genève, 65–79.
  • 3. Abdelhadi O., B.B. 2022. Coupling of Space Remote Sensing and GIS for Detection of Areas at Risk of Degradation (Sidi Mohammed Ben Abdellah Dam Case (Morocco)). Ecological Engineering & Environmental Technology, 161–172. DOI: 10.12912/27197050/152953
  • 4. al, S.C. 2022. Occurrence and distribution of endocrine disrupting chemicals and pharmaceuticals in the river Bouregreg (Rabat, Morocco). Chemosphere, 287(132202), 3.
  • 5. Amiri, M.P. 2019. Assessment of the importance of gully erosion effective factors using the Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. Geoderma, 340, 55–69.
  • 6. Amundson, R.B. 2015, 1261071 may. Soil and human security in the 21st century. Science, 348, 6235. DOI: 10.1126/science.1261071
  • 7. Arnoldus H.J. 1980. Methodology used to determine the maximum potential average soil loss due to sheet and rill erosion in Morocco. Bulletin F.A.O, 34.
  • 8. Bewket W. 2009. Assessment of Soil Erosion Hazard and Prioritization ForTreatment At the Watershed level: Case study in the Chemoga watershed. Blue Nile basin, Ethiopia. Land Degradation and Development, 610–622.
  • 9. Bollinne A., R.P. 1978. L’erodibilite des sols de Moyenne et Haute Belgique. Utilisation d’une methode de calcul du facteur K de l’équation universelle de perte de sol. Bull Soc Géogr Liège, 14(4), 127–140.
  • 10. Borrelli P.R. 2017. An assessment of the global Impact of 21st century land use change on soil erosion. Nat. Commun, 8. DOI: 10.1038/ 2013
  • 11. Bounouira H. 2007. Etude des qualites chimiques et geochimiques du bassin versant Bouregreg. doctorat Thèse of Sciences, University Ibn Tofail, Kénitra, 5.
  • 12. Bryan R. 2000. Soil erodibility and processes of water erosion on hillslope. Geomor-phology, 32(3–4), 385–415.
  • 13. Cerdà A.K.-C.-M.-R. 2017. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. Journal of environmental management, 202, 268–275.
  • 14. Da Cunha E.B. 2017. Modeling soil erosion using RUSLE and GIS in a watershed occupied by rural settlement in the Brazilian Cerrado. Nat. Hazards, 85(2), 851–868.
  • 15. Dragicevic N., K.B. 2016. A review of the Gavrilovic method (Erosion Potential Method) application. Grad-evinar., 68(9), 715–725.
  • 16. Eekhout J.D. 2019, mar. Assessing the effectiveness of Sustainable Land. Sci. Total Environ, 654, 85–93.
  • 17. Ganasri B.R. 2016. Assessment of soil erosion by RUSLE model using remote sensing and GIS – A case study of Nethravathi Basin. Geosci. Front. DOI: 10.1016/j.gsf.2015.10.007.
  • 18. Guerra A.J. 2017. Slope processes, mass movement and soil erosion: A review. Journal of Pedosphere, 27(1), 27–41.
  • 19. Haregeweyn N.T. 2017. Comprehensive assessment of soil erosion risk for better land use planning in river basins: case study of the Upper Blue Nile River. Sci Total Environ, 574, 95–108. DOI: 10.1016/j.scitotenv.2016.09.019
  • 20. Heusch B. 1970. L’érosion du Pré Rif occidental: une étude quantitative de l’érosion hydrique. Ann Rech For Maroc, 12(9), 176.
  • 21. Kacimi I., E.M. 2020. Comparison of the MUSLE Model and Two Years of Solid Transport Measurement, in the Bouregreg Basin, and Impact on the Sedimentation in the Sidi Mohamed Ben Abdellah Reservoir, Morocco. Water, 12(1882). DOI: 10.3390/w12071882
  • 22. Kalambukattu J.K. 2017. Modelling soil erosion risk in a mountainous watershed of Mid-Himalaya. Eurasian Journal of Soil Science, 6(2), 92–105.
  • 23. Kiage L. 2013. Perspectives on the assumed causes of land degradation in the rangelands of Sub-Saharan Africa. Progress in Physical Geography: Earth and Environment, 37(5).
  • 24. Koch A.M. 2013, Nov. Soil security: solving the global. Glob. Pol., 4, 434–441.
  • 25. Gliz M., B.R. 2015. Vulnerability of soils in the watershed of wadi el hammam to water erosion (Algeria). J. Water Land Dev., 24. DOI: 10.1515/jwld- 2015- 0 0 01., 3–10.
  • 26. Mahé G., B.H. 2014. Evolution des débits liquides et solides du Bouregreg. In : Laouina, A. & Mahé, G. (Eds.), Gestion durable des terres. Proceedings de la réunion multi-acteurs sur le bassin du Bouregreg. CERGéo, Faculté des Lettres et Sciences Humaines, Université Mohammed V-Agdal, Rabat, 21–36.
  • 27. Mengistu D. 2015. Soil erosion hazard under the current and potential climate change induced loss of soil organic matter in the upper Blue Nile (Abay) River Basin, Ethiopia. ReaearchGate, 137–163.
  • 28. Molla T. 2017. Estimating soil erosion risk and evaluating erosion control measures for soil conservation planning at Koga watershed in Ethiopia’s highlands. Solid Earth, 8, 13–25.
  • 29. Moore D.W. 1992. Length–slope factors for the revised universal soil loss equation: simplified method of estimation. J. Soil Water Conserv, 47, 423–428.
  • 30. Moore I.B. 1986. Physical basis of the length slope factor in the universal soil loss equation. (S. A. (5), Ed.) Soil Sci, 1294–1298.
  • 31. Morgan R. 1998. The European soil erosion model (EUROSEM):A dynamic approach for predicting sediment transport from fields andsmall catchments. Earth Surface Processes and Land forms, 23(6), 527–544.
  • 32. Ozsoy G.A. 2012. Determination of soil erosion risk in the Mustafakemalpasa River Basin, Turkey, using the revised universal soil risk equation, geographic information system, and remote sensing. Environ. Manag., 50(4), 679–694.
  • 33. Panagos P.B. 2017. Global rainfall erosivity assessment based on high-temporal. Scientific Reports, 7(1), 4175.
  • 34. Pimentel, D. 2006. Soil erosion: a food and environmental threat. Environment, Development and Sustainability 8(1), 119–137.
  • 35. Bou Kheir R., O.C. 2006. Regional soil erosion risk mapping in Lebanon. Geomorphology, 82 (3–4). DOI: 10.1016/J.GEOMORPH.2006.05.012., 47–359.
  • 36. Renard K. 1997. Predicting soil erosion by water:Aguide to conservation planning with revised universal soil loss equation (RUSLE). Agricultural Handbook, 703.
  • 37. Srinivasan R. 1991. Effect of slope prediction methods on slope and erosion estimates. Journal of Applied Engineering in Agriculture, 7(6), 779–783.
  • 38. Stocker T. 2014. Climate change 2013: the physical science basis.Working Group I Contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 867.
  • 39. Tesema T.L. 2020. Sediment Yield Estimation and Effect of Management Options on Sediment Yield of Kesem Dam Watershed, Awash Basin, Ethiopia. Sci. Afr., 9(1).
  • 40. Tucker C. 1997. Red and photographic infrared linear combination for monitoring vegetation, 8, 127–150.
  • 41. Durigona V.L., D.C. 2014. NDVI time series for monitoring RUSLEcover management factor in a tropicalwatershed. International Journal of RemoteSensing, 37–41 Mortimer Street, London W1T 3JH, UK.
  • 42. Vörösmarty C.M. 2003. Anthropogenic sediment retention: major global impact from registered river. Glob. Planet. Chang, 169–190((1–2)), 39.
  • 43. van Remortel, R.M. 2004. Computing the RUSLE LS factor through array- based slope length processing of digital elevation data using a C++ executable. Comput. Geosci., 30, 1043–1053.
  • 44. Vander-Knijff J.J. 2000. Soil Erosion Risk Assessment in Europe EUR 19044 EN. Office for Official Publications of the European Communities, Luxembourg, 34.
  • 45. Wischmeier W.H., Smith D.D. 1978. Prediction rainfall erosion losses, a guide to conservation planning Science U.S. Dep Agric. Handbook, 537.
  • 46. Wischmeier W.H. 1978. Predicting rainfall erosion losses: a guide to conservation planning.
  • 47. Yue T.X. 2020. Effect of time resolution of rainfall measurements on the erosivity factor in the. International Soil and Water Conservation Research.
  • 48. Zerihun M.M. 2018. Assessment of soil erosion using RUSLE, GIS and remote sensing in NW Ethiopia. Geoderma regional, 12, 83–90.
  • 49. Ziadat F.M. 2013. Effect of rainfall intensity, slope, land use, and antecedent soil moisture on soil erosion in an arid environment. & Development, 24(6), 582–590.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-489d19a5-74ab-40a3-b11e-c0d73076e93c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.