PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza strategiczna polskiego projektu wagi Kibble’a

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Strategic analysis of the Polish project of Kibble balance
Języki publikacji
PL
Abstrakty
PL
Główny Urząd Miar, w wyniku konsultacji z polskim środowiskiem przemysłowym i akademickim, podjął decyzję o powstaniu zespołu roboczego, którego głównym celem było przeprowadzenie analizy celowości budowy w Polsce wagi Kibble’a wg niezależnego projektu. Inicjatywa ta nawiązuje bezpośrednio do postanowień BIPM, których celem jest ostateczne odejście od dotychczasowego wzorca masy, będącego materialnym artefaktem i zastąpienie go wzorcem opartym na zjawiskach fizyki klasycznej i kwantowej. Zespół wskazał główne argumenty przemawiające za bezpośrednim zaangażowaniem się w prace związane ze skutkami redefinicji kilograma. Za główny powód uznano oczywiste przekonanie, że nowoczesna metrologia jest motorem rozwoju gospodarki narodowej. Poza tym Polska, uznawana za kraj będący liderem regionu Europy Środkowo-Wschodniej i jeden z filarów Unii Europejskiej, nie może pozostawać w tyle za krajami wysoko rozwiniętymi i rozwijającymi się na różnych kontynentach, które już zaczęły opracowywać własne projekty wag Kibble’a. Przeprowadzona analiza strategiczna polskiego projektu obejmowała wybór właściwej koncepcji, sporządzenie szacunkowego kosztorysu i terminarza działań, wskazanie najistotniejszych wyzwań technicznych oraz potencjalnych źródeł finansowania projektu, jak również zarysowała perspektywy realizacji tego przedsięwzięcia w oparciu o przemysł krajowy i współpracę międzynarodową.
EN
The Central Office of Measures, after consultations with Polish industrial and academic environment, decided to create a working team whose main goal is to analyse the purposefulness of constructing the Kibble balance in Poland according to an independent project. This initiative refers directly to the provisions of the BIPM, the aim of which is to definitively move away from the existing mass standard, which is a material artefact, and replace it with a model based on the phenomena of classical and quantum physics. The team pointed out the main arguments for direct involvement in work related to the effects of the kilogram redefinition. The main reason is the obvious conviction that modern metrology is the driving force for the development of the national economy. In addition, Poland, considered as a country that is a leader of Central and Eastern Europe and one of the pillars of the European Union, can not be left behind highly developed and developing countries on various continents that have already started to develop their own Kibble balances. The strategic analysis of the Polish project includes the choice of the right concept, preparation of an costing estimate and schedule of activities, an indication of the most important technical challenges and potential sources for the project financing as well as outlining the perspectives for the implementation of this project based on domestic industry and international cooperation.
Rocznik
Tom
Strony
15--37
Opis fizyczny
Bibliogr. 43 poz., fot., rys., tab.
Bibliografia
  • [1] Mills I., Mohr P., Quinn T., Taylor B., Williams E., Redefinition of the kilogram: a decision whose time has come. Metrologia, vol. 42 (2005), s. 71-80.
  • [2] Ossowski R., Przegląd aktualnej wiedzy na temat prowadzonych badań nad redefinicją jednostki masy (stan na koniec 2013 r.). Biuletyn GUM, nr 1-2 (2014), s. 25-29.
  • [3] Consultative Committee for Mass and Related Quantities (CCM): Report of the 12th meeting (26 March 2010) to the International Committee for Weights and Measures. Bureau International des Poids et Mesures, Sèvres.
  • [4] Dudek E., Mosiądz M., Orzepowski M., Wzorce wielkości elektrycznych oparte na zjawiskach kwantowych. Biuletyn GUM, nr 3 (2009), s. 3-16.
  • [5] Zięba A., Kwantowy układ SI - podstawy fizyczne i perspektywy przyjęcia. Biuletyn GUM, nr 1-2 (2015), s. 14-19.
  • [6] Resolutions of the 26th CGPM. Versailles, 13-16 November 2018.
  • [7] Steiner R., Newell D., Williams E., A result from the NIST watt balance and an analysis of uncertainties. IEEE Transactions on Instrumentation and Measurement, vol. 48 (1999), s. 205-208.
  • [8] Kibble B., Robinson I., Principles of a new generation of simplified and accurate watt balances. Metrologia, vol. 51 (2014), s. S132-S139.
  • [9] Haddad D., Seifert F., Chao L., Li S., Newell D., Pratt J., Williams C., Schlamminger S., Invited Article: A precise instrument to determine the Planck constant, and the future kilogram. Review of Scientific Instruments 87 (2016), 061301.
  • [10] Steiner R., Newell D., Williams E., Details of the 1998 watt balance experiment determining the Planck constant. Journal Research of the NIST, vol. 110 (2005), s. 1-26.
  • [11] Haddad D., Seifert F., Chao L., Cao A., Sineriz G., Pratt J., Newell D., Schlamminger S., First measurements of the flux integral with the NIST-4 watt balance. IEEE Transactions on Instrumentation and Measurement, vol. 64 (2015), s. 1642-1649.
  • [12] Seifert F., Newell D., Chao L., Haddad D., Pratt J., Schlamminger S., Monitoring gravity for the NIST-4 watt balance. Proc. of IEEE 2016 Conference on Precision Electromagnetic Measurements (CPEM), 2016, 1-2.
  • [13] Leaman E., Haddad D., Seifert F., Chao L., Cao A., Pratt J., Schlamminger S., Newell D., A determination of the local acceleration of gravity for the NIST-4 watt balance. IEEE Transactions on Instrumentation and Measurement, vol. 64 (2015), s. 1663-1669.
  • [14] Jarrett D., Elmquist R., Kraft M., Quantum Hall Resistance Traceability for the NIST-4 Watt Balance. Proc. of IEEE 2016 Conference on Precision Electromagnetic Measurements (CPEM) 2016.
  • [15] Haddad D., Waltrip B., Steiner R., Low Noise Programmable Current Source for the NIST-3 and NIST-4 Watt Balance. Proc. of IEEE 2012 Conference on Precision electromagnetic Measurements, 2012.
  • [16] Chao L., Seifert F., Cao A., Haddad D., Newell D., Schlamminger S., Pratt J., The Design of the New NIST-4 Watt Balance. Proc. of IEEE 29th Conference on Precision Electromagnetic Measurements (CPEM), 2014.
  • [17] Haddad D., Seifert F., Chao L., Possolo A., Newell D., Pratt J., Williams C., Schlamminger S., Measurement of the Planck constant at the National Institute of Standards and Technology from 2015 to 2017. Metrologia, vol. 54 (2017), s. 633-641.
  • [18] Schlamminger S., Design of the permanent-magnet system for NIST-4. IEEE Transactions on Instrumentation and Measurement, vol. 62 (2013), s. 1524-1530.
  • [19] Schlamminger S., Steiner R., Haddad D., Newell D., Seifert F., Chao L., Liu R., Williams E., Pratt J., A summary of the Planck constant measurements using a watt balance with a superconducting solenoid at NIST. Metrologia, vol. 52 (2015), s. L5-L8.
  • [20] https://www.bipm.org/en/bipm/mass/watt-balance/
  • [21] Improved understanding of Kibble balance magnets https://www.bipm.org/en/news/full-stories/2018-01-kibble.html
  • [22] Li S., Bielsa F., Stock M., Kiss A., Fang H., A permanent magnet system for Kibble balances. Metrologia, vol. 54 (2017), s. 775-783.
  • [23] Li S., Bielsa F., Stock M., Kiss A., Fang H., Coil-current effect in Kibble balances: analysis, measurement, and optimization. Metrologia, vol. 55 (2018), s. 75-83.
  • [24] Ahmedov H., Korutlu B., Özgür B., Yaman O., Alignment in UME oscillating-magnet Kibble balance experiment. UME Reports 2017.
  • [25] Ahmedov H., Babayiğit Aşkın N., Korutlu B., Orhan R., Preliminary Planck constant measurements via UME oscillating magnet Kibble balance. Metrologia, vol. 55 (2018), s. 326-333.
  • [26] Robinson I., Towards the redefinition of the kilogram: a measurements of the Planck constant using the NPL Mark II watt balance. Metrologia, vol. 49 (2012), s. 113-156.
  • [27] Davidson S., Robinson I., Lovelock P., Jarvis C., The development of a next-generation Kibble balance for the realization of the unit of mass following the revision of the SI. Euspen’s 18th International Conference & Exhibition, Venice, June 2018.
  • [28] Pinot P., Macé S., Geneves G., Gournay P., Haddad D., Lecollinet M., Villar F., Himbert M., Study of flexure strips made of copper-berilium alloy to be used for French watt balance experiment. Revue Française de Métrologie 21 (2010), s. 9-21.
  • [29] Thomas M., Ziane D., Pinot P., Karcher R., Imanaliev A., Pereira Dos Santos F., Merlet S., Piquemal F., Espel P., A determination of the Planck constant using the LNE Kibble balance in air. Metrologia, vol. 54 (2017), s. 468-480.
  • [30] Researchers developing a new balance for the new kilo-gram. Technische Universität Ilmenau (2017) https://phys.org/news/2017-06-kilogram.html
  • [31] Rothleitner Ch., Schleichert J., Günther L., Vasilyan S., Rogge N., Knopf D., Fröhlich T., Härtig F., The Planck-Balance- a self-calibrating precision balance for industrial applications. 59th ILMENAU SCIENTIFIC COLLOQUIUM, Technische Universität Ilmenau, 11-15 September 2017.
  • [32] Rothleitner C., Schleichert J., Rogge N., Günther L., Vasilyan S., Hilbrunner F., Knopf D., Fröhlich T., Härtig F., The Planck-Balance- using a fixed value of the Planck constant to calibrate E1/E2-weights. Measurement Science and Technology, vol. 29 (2018), 074003.
  • [33] Günther L., Rothleitner C., Schleichert J., Rogge N., Vasilyan S., Härtig F., Fröhlich T., The Planck-Balance - primary mass metrology for industrial applications. Journal of Physics: Conf. Series 1065 (2018) s. 042021-1- 042021-4.
  • [34] Collaboration on the design and construction of the next generation of Kibble balances. National Physical Laboratory, July 2018.
  • [35] Davidson S., Determination of the effect of transfer between vacuum and air on mass standards of Platinum - iridium and stainless steel. Metrologia, vol. 47 (2010), s. 487-497.
  • [36] J. Berry, S. Davidson: Effect of pressure on the sorption correction to stainless steel, platinum/iridium and silicon mass artefacts. Metrologia, vol. 51 (2014), s. S107-S113.
  • [37] P. Fuchs, K. Marti, S. Russi: Traceability of mass in air to mass in vacuum: results on the correlation between the change in mass and the surface chemical state. Metrologia, vol. 51 (2014), s. 376-386.
  • [38] Davidson S., Berry J., Abbott P., Marti K., Green R., Malengo A., Nielsen L., Air-vacuum transfer; establishing traceability to the new kilogram. Metrologia, vol. 53 (2016), s. A95-A113.
  • [39] Czteroletni strategiczny plan działania GUM 2018-2021. Wydawnictwo GUM, Warszawa 2017.
  • [40] Współpraca z Przemysłem i Nauką. Wydawnictwo GUM, Warszawa, 2017.
  • [41] Strategia Rozwoju Kraju 2020. Ministerstwo Rozwoju Regionalnego, Departament Koordynacji Polityki Strukturalnej. Warszawa 2012.
  • [42] Strategia na rzecz Odpowiedzialnego Rozwoju do roku 2020 (z perspektywą do 2030 r.). Dokument przyjęty uchwałą Rady Ministrów w dniu 14 lutego 2017 r. w Warszawie.
  • [43] Pierwszy w Polsce próżniowy komparator masy będzie pracował w GUM. Artykuł w Biuletynie GUM, nr 1 (2018), s. 5.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48966826-981e-43de-830b-d2539a51faa3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.