PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensorless field oriented control for five-phase induction motors with third harmonic injection and fault insensitive feature

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a solution for sensorless field oriented control (FOC) system for five-phase induction motors with improved rotor flux pattern. In order to obtain the advantages of a third harmonic injection with a quasi-trapezoidal flux shape, two vector models, α1–β1 and α3–β3, were transformed into d1– q1, d3– q3 rotating frames, which correlate to the 1st and 3rd harmonic plane respectively. A linearization approach of the dual machine model in d – q coordinate frames is proposed by introducing a new additional variable “x” which is proportional to the electromagnetic torque. By applying the static feedback control law, a dual mathematical model of the five-phase induction motor was linearized to synthesize a control system in which the electromagnetic torque and the rotor flux can be independently controlled. The results shows the air gap flux shape in steady as well transient states under various load conditions. Moreover, the implemented control structure acquires fault tolerant properties and leads to possible emergency running with limited operation capabilities. The fault-tolerant capability of the analyzed machine was guaranteed by a special implemented control system with a dedicated speed observer, which is insensitive to open-phase fault situation. The experimental tests have been performed with single and double-open stator phase fault. A torque measurement was implemented to present the mechanical characteristics under healthy and faulty conditions of the drive system.
Rocznik
Strony
253--262
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Gdansk University of Technology, Faculty of Electrical and Control Engineering
  • Gdansk University of Technology, Faculty of Electrical and Control Engineering
autor
  • Gdansk University of Technology, Faculty of Electrical and Control Engineering
autor
  • Gdansk University of Technology, Faculty of Electrical and Control Engineering
autor
  • Gdansk University of Technology, Faculty of Electrical and Control Engineering
Bibliografia
  • [1] E.E. Ward and H. Härer, “Preliminary investigation of an inverter-fed 5-phase induction motor”, PROC. IEE, vol. 116, No. 6, 1969.
  • [2] C.C. Scharlau, L.F.A. Pereira, and L.A. Pereira, “Performance of a five-phase induction machine with optimized air gap field under open loop V/f control”, IEEE Transaction, vol. 23, no. 4, 2008.
  • [3] O. Ellabban and H. Abu-Rub, “Field Oriented Control of a Five Phase Induction Motor Fed by a Z-Source Inverter”, IEEE International Conference on Industrial Technology (ICIT), pp. 1624‒1629, 2013.
  • [4] H. Xu, H.A. Toliyat, and L.J. Petersen, “Five-Phase Induction Motor Drives with DSP-Based Control System”, IEEE International Electric Machines and Drives Conference (Cat. No. 01EX485), pp. 304‒309, 2001.
  • [5] M.A. Elgenedy, A.S. Abdel-Khalik, A.M. Massoud, and A. Ahmed, “Indirect Field Oriented Control of Five-Phase Induction Motor Based on SPWM-CSI”, International Conference on Electrical Machines (ICEM), pp. 2101‒2106, 2014.
  • [6] L. Zheng, J.E. Fletcher, B.W. Williams, and X. He, “Dual-Plane Vector Control of Five-Phase Induction Machine for Improved Flux Pattern”, IEEE Transactions, vol. 55, no. 5, pp. 1996‒2005, 2008.
  • [7] K. Min-Huei, K. Nam-Hun, and B. Won-Sik, “A Five-Phase IM Vector Control System Including 3rd Current Harmonics Component”, 8th International Conference on Power Electronics – ECCE Asia, pp. 2519‒2524, 2011.
  • [8] J.A. Riveros, J. Prieto, F. Barrero, S. Toral, M. Jones, and E. Levi, “Predictive Torque Control for five-phase induction motor drives”, IECON 2010 – 36th Annual Conference on IEEE Industrial Electronics Society, pp. 2467‒2472, 2010.
  • [9] H.A. Toliyat and X. Huangsheng, “A novel direct torque control (DTC) method for five-phase induction machine”, APEC 2000, Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 162‒168, 2000.
  • [10] M. Adamowicz, J. Guziński, and Z. Krzemiński, “Nonlinear Control of Five Phase Induction Motor with Synchronized Third Harmonic Flux Injection”, (SGRE), 2015.
  • [11] E. Levi, R. Bojoi, F. Profumo, H.A. Toliyat, and S. Williamson, “Multiphase induction motor drives – a technology status review, in Electric Power Applications”, IET , vol. 1, no. 4, 489‒516, 2007.
  • [12] S. Williamson and S. Smith, “Pulsating torque and losses in multiphase induction machines, in Industry Applications”, IEEE Transactions, vol. 39, no. 4, 986‒993, 2003.
  • [13] A.S. Abdel-Khalik, M.I. Masoud, and B.W. Williams, “Improved Flux Pattern With Third Harmonic Injection for Multiphase Induction Machines”, IEEE Transactions on Power Electronics, vol. 27, no. 3, 1563‒1578, 2012.
  • [14] A.S. Abdel-Khalik, S.M. Gadoue, M.I. Masoud, and B.W. Wiliams, “Optimum Flux Distribution With Harmonic Injection for a Multiphase Induction Machine Using Genetic Algorithms”, IEEE Transactions on Energy Conversion, vol. 26, no. 2, 501‒512, 2011.
  • [15] H.A. Toliyat, T.A. Lipo, and J.C. White “Analysis of a concentrated winding induction machine for adjustable speed drive applications – Part 1: Motor Analysis”, IEEE Trans. Energy Convers., vol. 6, no. 4, 679‒683, 1991.
  • [16] H. Guzman, M.J. Duran, F. Barrero, B. Bogado, and S. Toral, “Speed Control of Five-Phase Induction Motors With Integrated Open-Phase Fault Operation Using Model-Based Predictive Current Control Techniques”, IEEE Transactions, vol. 61, no. 9, 4474‒4484, 2014.
  • [17] M. Bermudez, I. Gonzalez-Prieto, F. Barrero, H. Guzman, M.J. Duran, and X. Kestelyn, “Open-Phase Fault-Tolerant Direct Torque Control Technique for Five-Phase Induction Motor Drives”, IEEE Transactions, vol. 64, no. 2, 902‒911, 2014.
  • [18] H.A. Toliyat, T.A. Lipo, and J.C. White, “Analysis of a concentrated winding induction machine for adjustable speed drive applications – Part II: Motor design and performance”, IEEE Trans. Energy Convers., vol. 6, no. 4, pp. 684–692, 1991.
  • [19] M. Morawiec, P. Strankowski, A. Lewicki, and J. Guzinski, “Sensorless control of five-phase induction machine supplied by the VSI with output filter”, 10th International Conference on Compatibility, Power Electronics and Power Engineering, pp. 304‒309, 2016.
  • [20] Z. Krzemiński, A. Lewicki, and M. Morawiec, “Speed observer based on extended model of induction machine”, IEEE International Symposium on Industrial Electronics (ISIE), 2010.
  • [21] Z. Krzeminski, “Observer of induction motor speed based on exact disturbance model”, Int. Conf. EPE-PEMC’2008, Poznan, Poland, 2008.
  • [22] M. Morawiec and J. Guzinski, “Sensorless control system of induction machine supplied by voltage source inverter with output filter”, 17th EPE’15 ECCE-Europe, 2015.
  • [23] A. Lewicki, J. Guziński, and P. Strankowski, “Space-Vector Modulation for five-phase Voltage Source Inverter”, XII Conf. SENE 2015, 18‒20, 2015.
  • [24] A. Lewicki, J. Guziński, and P. Strankowski, “Five-Phase Voltage Source Inverter Space-Vector Modulation Method”, Electrical Review R.92 NR 4/2016.
  • [25] P. Strankowski, J. Guziński, M. Morawiec, A. Lewicki, and F. Wilczyński, “Sensorless disturbance detection for five phase induction motor with third harmonic injection”, 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Cadiz, 2017, pp. 387‒391.
Uwagi
EN
This work was supported by National Science Centre of Poland, grant no.2015/19/N/ST7/03078 and grant no. DEC-2013/09/B/ST7/01642.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-488f22be-7b4b-45ef-b9f8-b9efce4eb22f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.