PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Designing issues of the alarm system in context of functional safety and human factors

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article addresses selected aspects of the alarm system and human factors that should be evaluated during the design and operation of an industrial hazardous installation. In such installations the layer of protection analysis (LOPA) methodology is often applied for simplified risk analysis based on defined accident scenarios. To reduce and control the risks the safety instrumented functions (SIFs) are identified and their safety integrity levels (SILs) determined taking into account defined criteria the risk evaluation results. Given SIF is implemented using the basic process control system (BPCS), the alarm system (AS) and the safety instrumented system (SIS). Nevertheless a crucial role plays the human-operator undertaking safety-related decisions during potential abnormal situations and accidents. Below some issues concerning requirements for the alarm system design in context of human factors are outlined and discussed.
Rocznik
Strony
47--58
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology, Gdańsk, Poland
Bibliografia
  • [1] ANSI/ISA-18.2 (2009). Management of Alarm Systems for the Process Industries.
  • [2] Carey, M. (2001). Proposed Framework for Addressing Human Factors in IEC 61508. Prepared by Amey VECTRA Ltd. for Health and Safety Executive (HSE), U.K. Contract Research Report 373.
  • [3] COA (1998). Critical Operator Actions - Human Reliability Modeling and Data Issues. Nuclear Safety, NEA/CSNI/R(98)1. OECD Nuclear Energy Agency.
  • [4] EEMUA (2007). Publication 191: Alarm Systems, A Guide to Design, Management and Procurement (Edition 2). The Engineering Equipment and Materials Users’ Association. London.
  • [5] EN ISO 9241-210 (2010). Ergonomics of humansystem interaction - Part 210: Human-centred design for interactive systems.
  • [6] EN 62682 (2015). Management of alarms systems for the process industries.
  • [7] Froome, P. & Jones, C. (2002). Developing advisory software to comply with IEC 61508. Contract Research Report 419. HSE Books.
  • [8] Gertman, I. D. & Blackman, H.S. (1994). Human Reliability and Safety Analysis Data Handbook. New York: A Wiley-Interscience Publication.
  • [9] Guidelines (2008) for Hazard Evaluation Procedures. New York: Center for Chemical Process Safety. Wiley-Interscience, A John Wiley & Sons.
  • [10] Hollnagel, E. (1987). Information and reasoning in intelligent decision support systems. Int. J. Man-Machine Studies 27, p. 665-678.
  • [11] Hollnagel, E. (1998). Cognitive Reliability and Error Analysis Method, CREAM. Elsevier Science Ltd, Oxford.
  • [12] Hollnagel, E. (1999). Cognitive Systems Engineering: New wine in new bottles. Int. J. Human-Computer Studies, 51, p. 339-356.
  • [13] IAEA (1998).TECDOC-1019. Use of computers to enhance nuclear power plant diagnosis and operator response. International Atomic Energy Agency, Vienna.
  • [14] IEC 61508 (2010). Functional Safety of Electrical/ Electronic/ Programmable Electronic Safety-Related Systems. Parts 1–7. Geneva: International Electrotechnical Commission.
  • [15] IEC 61511 (2014). Functional safety: Safety Instrumented Systems for the process industry sector. Parts 1–3. Geneva: International Electrotechnical Commission.
  • [16] IEC 61513 (2011). Nuclear power plants, Instrumentation and control for systems important to safety, General requirements for systems. International Electrotechnical Commission, Geneva.
  • [17] Kirwan, B. (1994). A Guide to Practical Human Reliability Assessment. CRC Press, London.
  • [18] Kosmowski, K.T. (2003). Risk analysis methodology for reliability and safety management of nuclear power plants (in Polish). Monografie 33. Gdańsk University of Technology Publishers.
  • [19] Kosmowski, K.T. (Ed.) (2007). Functional Safety Management in Critical Systems. Gdansk University of Technology. Publishing House OF Gdansk University (Wydawnictwo Fundacji Rozwoju Uniwersytetu Gdańskiego).
  • [20] Kosmowski, K.T. (2013). Functional safety and reliability analysis methodology for hazardous industrial plants. Gdańsk University of Technology Publishers.
  • [21] Kosmowski, K.T. (2013). Problems in designing and operating the functional safety solutions of higher integrity levels. Journal of Polish Safety and Reliability Association, 4, 1, 83-99.
  • [22] Kosmowski, K.T. (2014). Human factors in designing the instrumentation and control systems important to safety. International Journal of Performability Engineering 10, 7, 741-754.
  • [23] LOPA (2001). Layer of Protection Analysis, Simplified Process Risk Assessment. Center for Chemical Process Safety. American Institute of Chemical Engineers, New York.
  • [24] Rasmussen, J. (1983). Skills, rules, knowledge; signals, signs and symbols and other distinctions on human performance models. IEEE Transaction on Systems, Man and Cybernetics, SMC-13/3.
  • [25] Rasmussen, J. & Goodstein, L.P. (1985). Decision support in supervisory control. IFAC man-Machine Systems. Varsese, Italy.
  • [26] Rasmussen, J. & Svedung, I. (2000). Proactive Risk Management in a Dynamic Society. Swedish Rescue Services Agency, Karlstad.
  • [27] Reason, J. (1990). Human Error. Cambridge University Press.
  • [28] SPAR-H (2005). Human Reliability Analysis (HRA) Method, NUREG/CR-6883, INL/EXT-0500509, USNRC.
  • [29] Swain, A. D. & Guttmann, H. E. (1983). Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Application. NUREG/CR-1278.
  • [30] Woods D. D., Pople H. E. & Roth, E.M. (1990). The Cognitive Environment Simulation as a Tool for Modeling Human Performance and Reliability. NUREG/CR-5213. Westinghouse Science and Technology Center, Pittsburgh.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-488a7694-dd0f-47ec-addb-8f6478b205de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.