PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physio-mechanical & wear performance of banana fiber/walnut powder based epoxy composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present environmental condition indicates the immediate need for sustainable materials containing mainly natural elements for composite fabrication. Encouragement of natural fibers in composite materials can significantly reduce the greenhouse effect and the high cost of manufacturing synthetic fiber-based polymer composites. Hence, this study aimed to investigate the physio-mechanical properties of banana fiber (BF) fiber - based epoxy (EP) composites filled with walnut shell powder (WNP). Fabrication was carried out by mixing and cold pressing with fixed BF proportion and varying percentages of WNP (0%, 5%, 10%, 15 wt. %). The results obtained in the study suggest the mechanical properties of the BF/EP composite were enhanced with the addition of WNP as a filler. This is because the WNP filler occupies the spaces in the composite, which bridge the gaps between the banana fibers and the epoxy matrix; also, the inclusion of walnut powder in the BF/EP composites greatly enhanced their wear resistance. The microstructural properties of the composites were examined by scanning electron microscopy (SEM).
Twórcy
  • Department of Mechanical Engineering, DIT University Dehradun Uttarakhand, India
autor
  • Department of Mechanical Engineering, DIT University Dehradun Uttarakhand, India
  • Department of Mechanical Engineering, H.N.B.Garhwal University Srinagar- Garhwal, India
autor
  • Department of Mechanical Engineering, Lovely Professional University Punjab, India
Bibliografia
  • [1] M. Idicula, N.R. Neelakantan, Z. Oommen, K. Joseph, S. Thomas, A study of the mechanical properties of randomly oriented short banana and sisal hybrid fiber reinforced polyester composites, J. Appl. Polym. Sci. 96 (2005) 1699–1709. https://doi.org/10.1002/app.21636.
  • [2] S. Raghavendra, P.B. Shetty, P.G. Mukunda, Mechanical Properties of Short Banana Fiber Reinforced Natural Rubber Composites, Int. J. Innov. Res. Sci. Eng. Technol. 2 (2013) 1652–1655.
  • [3] M.M. Ibrahim, A. Dufresne, W.K. El-Zawawy, F.A. Agblevor, Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites, Carbohydr. Polym. 81 (2010) 811–819. https://doi.org/10.1016/j.carbpol.2010.03.057.
  • [4] R. Bhoopathi, M. Ramesh, C. Deepa, Fabrication and property evaluation of banana-hemp-glass fiber reinforced composites, in: Procedia Eng., 2014: pp. 2032–2041. https://doi.org/10.1016/j.proeng.2014.12.446.
  • [5] K.N. Indira, P. Jyotishkumar, S. Thomas, Thermal stability and degradation of banana fibre/PF composites fabricated by RTM, Fibers Polym. 13 (2012) 1319–1325. https://doi.org/10.1007/s12221-012-1319-x.
  • [6] R. Kumar, G. Chandan, R. Ramamoorthi, Fabrication and testing of natural fiber hybrid composites, Int. J. Eng. Res. 5 (2016) 285–288.
  • [7] K. Bilba, M.A. Arsene, A. Ouensanga, Study of banana and coconut fibers. Botanical composition, thermal degradation and textural observations, Bioresour. Technol. 98 (2007) 58–68. https://doi.org/10.1016/j.biortech.2005.11.030.
  • [8] S. Shahinur, M. Hasan, Jute/Coir/Banana Fiber Reinforced Bio-Composites: Critical Review of Design, Fabrication, Properties and Applications, in: Encycl. Renew. Sustain. Mater., Elsevier, 2020: pp. 751–756. https://doi.org/10.1016/b978-0-12-803581-8.10987-7.
  • [9] S.K. Samal, S. Mohanty, S.K. Nayak, Banana/glass fiber-reinforced polypropylene hybrid composites: Fabrication and performance evaluation, Polym. - Plast. Technol. Eng. 48 (2009) 397–414. https://doi.org/10.1080/03602550902725407.
  • [10] Y.F. Shih, C.C. Huang, Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites, J. Polym. Res. 18 (2011) 2335–2340. https://doi.org/10.1007/s10965-011-9646-y.
  • [11] M. Boopalan, M. Niranjanaa, M.J. Umapathy, Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites, Compos. Part B Eng. 51 (2013) 54–57. https://doi.org/10.1016/j.compositesb.2013.02.033.
  • [12] N. Venkateshwaran, A. ElayaPerumal, A. Alavudeen, M. Thiruchitrambalam, Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites, Mater. Des. 32 (2011) 4017–4021. https://doi.org/10.1016/j.matdes.2011.03.002.
  • [13] W. Jordan, P. Chester, Improving the Properties of Banana Fiber Reinforced Polymeric Composites by Treating the Fibers, in: Procedia Eng., 2017: pp. 283–289. https://doi.org/10.1016/j.proeng.2017.07.040.
  • [14] R. Karthick, K. Adithya, C. Hariharaprasath, V. Abhishek, Evaluation of mechanical behavior of banana fibre reinforced hybrid epoxy composites, in: Mater. Today Proc., 2018: pp. 12814–12820. https://doi.org/10.1016/j.matpr.2018.02.265.
  • [15] S.M. Sapuan, A. Leenie, M. Harimi, Y.K. Beng, Mechanical properties of woven banana fibre reinforced epoxy composites, Mater. Des. 27 (2006) 689–693. https://doi.org/10.1016/j.matdes.2004.12.016.
  • [16] A. Alavudeen, N. Rajini, S. Karthikeyan, M. Thiruchitrambalam, N. Venkateshwaren, Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation, Mater. Des. 66 (2015) 246–257. https://doi.org/10.1016/j.matdes.2014.10.067.
  • [17] M. Ramesh, T. Sri Ananda Atreya, U.S. Aswin, H. Eashwar, C. Deepa, Processing and mechanical property evaluation of banana fiber reinforced polymer composites, in: Procedia Eng., 2014: pp. 563–572. https://doi.org/10.1016/j.proeng.2014.12.284.
  • [18] S. Dhakal, B.S. Keerthi Gowda, An Experimental Study on Mechanical properties of Banana Polyester Composite, in: Mater. Today Proc., 2017: pp. 7592–7598. https://doi.org/10.1016/j.matpr.2017.07.092.
  • [19] N. Amir, K.A.Z. Abidin, F.B.M. Shiri, Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite, in: Procedia Eng., 2017: pp. 573–580. https://doi.org/10.1016/j.proeng.2017.04.140.
  • [20] P. Deepak, H. Sivaraman, R. Vimal, S. Badrinarayanan, R. Vignesh Kumar, Study of Wear Properties of Jute/Banana Fibres Reinforced Molybdenum disulphide Modified Epoxy Composites, in: Mater. Today Proc., 2017: pp. 2910–2919. https://doi.org/10.1016/j.matpr.2017.02.172.
  • [21] P.A. Sreekumar, F. Albert, G. Unnikrishnan, K. Joseph, S. Thomas, Mechanical and water sorption studies of ecofriendly banana fiber-reinforced polyester composites fabricated by RTM, J. Appl. Polym. Sci. 109 (2008) 1547–1555. https://doi.org/10.1002/app.28155.
  • [22] M.Z.H. Khan, M.A.R. Sarkar, F. Ibne, A. Imam, R.O. Malinen, ISSN 2277-7156 Original Article Fiber morphology and Pulping study of Banana Pseudo-stem, Int. J. Fiber Text. Res. 3 (2013) 31–35.
  • [23] A.R. Dayal, A. Gaikwad, A.S. Pawar, Development of a new bio composite material by utilizing walnut shell powder, coir and jute fiber and evaluation of its mechanical properties, Int. J. Mech. Prod. Eng. Res. Dev. 8 (2018) 819–826. https://doi.org/10.24247/ijmperdapr201893.
  • [24] D. Chandramohan, A.J. Presin Kumar, Experimental data on the properties of natural fiber particle reinforced polymer composite material, Data Br. 13 (2017) 460–468. https://doi.org/10.1016/j.dib.2017.06.020.
  • [25] E. Kuram, Rheological, mechanical and morphological properties of hybrid hazelnut (Corylus avellana L.)/walnut (Juglans regia L.) shell flour-filled acrylonitrile butadiene styrene composite, J. Mater. Cycles Waste Manag. 22 (2020) 2107–2117. https://doi.org/10.1007/s10163-020-01094-3.
  • [26] N.M. Moustafa, K.A. Mohammed, E.S. Al-Ameen, A.A.F. Ogaili, M.N.M. Al-Sabbagh, Mechanical and tribological properties of walnut/polypropylene natural composites, J. Mech. Eng. Res. Dev. 43 (2020) 372–380.
  • [27] P. Dhiman, H. Sharma, Effect of walnut shell filler on mechanical properties of jute-basalt hybrid epoxy composites, in: Mater. Today Proc., 2020: pp. 4537–4541. https://doi.org/10.1016/j.matpr.2020.10.811.
  • [28] Q. Zhang, Y. Li, H. Cai, X. Lin, W. Yi, J. Zhang, Properties comparison of high density polyethylene composites filled with three kinds of shell fibers, Results Phys. 12 (2019) 1542–1546. https://doi.org/10.1016/j.rinp.2018.09.054.
  • [29] N. Ayrilmis, A. Kaymakci, F. Ozdemir, Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour, J. Ind. Eng. Chem. 19 (2013) 908–914. https://doi.org/10.1016/j.jiec.2012.11.006.
  • [30] A.K. Singh, R.P. Verma, S. Avikal, K.S. Mehra, Mechanical characterization of epoxy composite reinforced with alkali treated walnut shell powder, in: Mater. Today Proc., 2021: pp. 10642–10646. https://doi.org/10.1016/j.matpr.2021.01.383.
  • [31] S.P. Gairola, Y.K. Tyagi, B. Gangil, A. Sharma, Fabrication and mechanical property evaluation of non-woven banana fibre epoxy-based polymer composite, in: Mater. Today Proc., 2020: pp. 3990–3996. https://doi.org/10.1016/j.matpr.2020.10.103.
  • [32] E.Y. Robinson, ANALYSIS AND PERFORMANCE OF FIBER COMPOSITES Second Edition B.D. Agrawal and L.J. Broutman A Wiley-Interscience Publication John Wiley and Sons, Inc., New York 449 pages, hard cover, 1990., Mater. Manuf. Process. 8 (1993) 375–379. https://doi.org/10.1080/10426919308934840.
  • [33] T. Singh, R. Chauhan, A. Patnaik, B. Gangil, R. Nain, A. Kumar, Parametric study and optimization of multiwalled carbon nanotube filled friction composite materials using taguchi method, Polym. Compos. 39 (2018) E1109–E1117. https://doi.org/10.1002/pc.24576.
  • [34] S. Kumar, B. Gangil, V.K. Patel, Physico-mechanical and tribological properties of Grewia Optiva fiber/bio-particulates hybrid polymer composites, in: AIP Conf. Proc., 2016: p. 020384. https://doi.org/10.1063/1.4946435.
  • [35] M. Rahman, A.A. Jasani, M.A. Ibrahim, Flexural Strength of Banana Fibre Reinforced Epoxy Composites Produced through Vacuum Infusion and Hand Lay-Up Techniques - A Comparative Study, Int. J. Eng. Mater. Manuf. 2 (2017) 31–36. https://doi.org/10.26776/ijemm.02.02.2017.02.
  • [36] S. Kumar, K.K.S. Mer, B. Gangil, V.K. Patel, Synergy of rice-husk filler on physico-mechanical and tribological properties of hybrid Bauhinia-vahlii/sisal fiber reinforced epoxy composites, J. Mater. Res. Technol. 8 (2019) 2070–2082. https://doi.org/10.1016/j.jmrt.2018.12.021.
  • [37] T. Singh, B. Gangil, B. Singh, S.K. Verma, D. Biswas, G. Fekete, Natural-synthetic fiber reinforced homogeneous and functionally graded vinylester composites: Effect of bagasse-Kevlar hybridization on wear behavior, J. Mater. Res. Technol. 8 (2019) 5961–5971. https://doi.org/10.1016/j.jmrt.2019.09.071.
  • [38] T. Singh, B. Gangil, A. Patnaik, D. Biswas, G. Fekete, Agriculture waste reinforced corn starch-based biocomposites: Effect of rice husk/walnut shell on physicomechanical, biodegradable and thermal properties, Mater. Res. Express. 6 (2019) 045702. https://doi.org/10.1088/2053-1591/aafe45.
  • [39] R. Khantwal, G. Gupta, R.S. Negi, Walnut Shell Reinforced Composite: A Review, Int. J. Sci. Eng. Res. 7 (2016) 179–189.
  • [40] S. Nitin, V.K. Singh, Mechanical behaviour of Walnut reinforced composite J. Mater. Environ. Sci. 4 (2013) 233–238.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4885e771-168e-4e84-b41f-38fe43aff0e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.