Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Electron co-extraction and suppression by a transverse magnetic fields is studied within a two dimensional particle-in-cell numerical model of surface ionisation ion source with beveled extraction opening. A novel approach of data presentation is proposed, based on the fact that dependences of co-extracted current on the filter strength could be approximated by four parameters only, describing e.g. initial electron current value and cut-off B value. In the paper the influence of extraction system geometry is considered – it is shown that the cut-off B value increases with the size of the opening in the extraction electrode, while the inclination of the extraction opening walls does not play any significant role. It is demostrated that the most of electron is eliminated by hiting the extraction electrode walls, however up to 30 % of electrons were lost by encountering the extraction channel walls due to the modification of their trajectories by the filter field. The influence of the magnetic filter field placement is also investigated – the center of the filter field has to be no further than 2 mm form the extraction channel orifice in order to achieve minimal values of the cut-off field (~20 mT). The possibly low extraction voltages are preferable, as the ammount of co-extracted electrons grows rapidly with Vext resulting in e.g. threefold increase of cut-off parameter value when extraction voltage is changed from 1 kV up to 10 kV. Within the considered model the filter field does not have any significant influecne on extracted H- current.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 36 poz., fig.
Twórcy
autor
- Institute of Physics, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
autor
- Faculty of Electrical Engineering and Computer Science, Lublin University of Technology ul. Nadbystrzycka 38 D, 20-618 Lublin, Poland
Bibliografia
- 1. Inoue T., Pietro E. D., Hanada M., Hemsworth R. S., Krylov A., Kulygin V., Massmann P., Mondino P.L., Okumura Y., Panasenkov A., Speth E., and Watanabe K., Design of neutral beam system for ITER-FEAT, Fusion Eng. Design 2001; 56–57: 517–521.
- 2. Hemsworth R.S., Inoue T. Positive and negative ion sources for magnetic fusion, IEEE Trans. Plasma Sci. 2005; 33(6): 1799–1813.
- 3. Hemsworth R., Tanga A., Antoni V. Status of the ITER neutral beam injection system (invited ), Rev. Sci. Instrum. 2008; 79(2): 02C109.
- 4. Hemsworth R. et al. Status of the ITER heating neutral beam system, Nucl. Fusion. 2009; 49(4): 045006.
- 5. Speth E., Falter H. D., Franzen P., Fantz U. et al. Overview of the RF source development programme at IPP Garching, Nucl. Fusion. 2006; 46(6): S220.
- 6. Kraus W., Fantz U., Franzen P., Fröschle M., Heinemann B., Riedl R., Wünderlich D. Rev Sci Instrum. The development of the radio frequency driven negative ion source for neutral beam injectors (invited), Rev. Sci, Instr. 2012; 83(2): 02B104.
- 7. Sonato P., Agostinetti P., Anaclerio G., Antoni V., Barana O., Bigi M., Boldrin M., Cavenago M., Dal Bello S., Dalla Palma M. et al., The ITER full size plasma source device design, Fusion Eng. Des. 2009; 84(2–6): 269–274.
- 8. Toigo V., Piovan R., Bello S. D., Gaio E., Luchetta A., Pasqualotto R., Zaccaria P., Bigi M., Chitarin G., Marcuzzi D. et al. The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors, New J. Phys. 2017; 19: 085004.
- 9. Wunderlich D., Schiesko L., McNeely P., Fantz U., Franzen P., and NNBI- ̈ Team, On the proton flux toward the plasma grid in a RF-driven negative hydrogen ion source for ITER NBI, Plasma Phys. Controlled Fusion. 2012; 54(12): 125002.
- 10. Bacal M., Wada M. Negative hydrogen ion production mechanisms, Appl. Phys. Rev. 2015; 2(2): 021305.
- 11. Fantz U., Franzen P., Kraus W., Berger M., ChristKoch S., Falter H., Froschle M., Gutser R. et al. Physical performance analysis and progress of the development of the negative ion RF source for the ITER NBI system, Nucl. Fusion. 2009; 49(12): 125007.
- 12. Rafalskyi D., Aanesland A. Electron-less negative ion extraction from ion-ion plasmas, Appl. Phys. Lett. 2015; 106(10): 104101.
- 13. Wimmer C., Fantz U. NNBI-Team. Extraction of negative charges from an ion source: Transition from an electron repelling to an electron attracting plasma close to the extraction surface, J. Appl. Phys. 2016; 120(7): 073301.
- 14. Mochalskyy S., Lifschitz A.F. and Minea T. Extracted current saturation in negative ion sources, J. Appl. Phys. 2012; 111(11): 113303.
- 15. Mochalskyy S., Wuenderlich D., Fantz U., Towards a realistic 3D simulation of the extraction region in ITER NBI relevant ion source, Nuclear Fusion. 2015; 55(3): 033011.
- 16. Fubiani G., Boeuf J.P. Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry, Plasma Sources Science & Technology. 2015; 24(5): 055001.
- 17. Nishioka S., Goto I., Miyamoto K., Hatayama A., Fukano A., Study of ion-ion plasma formation in negative ion sources by a three-dimensional in real space and three-dimensional in velocity space particle in cell model, J. Appl. Phys. 2016; 119(2): 023302.
- 18. Fubiani G., Garrigues L., Hagelaar G., Kohen N. and Boeuf J. P., Modeling of plasma transport and negative ion extraction in a magnetized radio-frequency plasma source. New J. of Phys. 2017; 19(1): 015002.
- 19. Garrigues L., Fubiani G., Boeuf J.P. Negative ion extraction via particle simulation for fusion: critical assessment of recent contributions, Nucl. Fusion. 2017; 57(1), 014003.
- 20. Shah M., Chaudhury B., Bandyopadhyay M., Chakraborty A. Computational characteristics of plasma transport across magnetic filter in ROBIN using PIC-MCC simulation, Fusion Eng. Des. 2020; 151: 111402.
- 21. Kanki T., Himura H., Tsumori K., Nakano H. Simulations of negative ion extraction and transport for developing novel remote reactive ion processing system, Jpn. J. Appl. Phys. 2020; 59(SJ): SJJE01.
- 22. Demerdjiev A., Goutev N., Tonev D. Simulations of negative hydrogen ion sources. J. Phys.: Conf. Ser. 2018; 1023: 012033.
- 23. Turek M., Węgierek P. Negative Ion Beam Emittance Calculations, Devices and Methods of Measurements. 2020; 11(1): 42–52.
- 24. Turek M. Negative Ion Beam Production in an Ion Source with Chamfered Extraction Opening, Acta Physica Polonica A. 2019; 136(2): 322–328.
- 25. Turek M. Two-Dimensional Simulations of H-Ions Extraction, Acta Physica Polonica A. 2017; 132(2); 254–258.
- 26. Turek M. Symulacje PIC plazmy w źródle jonów ujemnychPrzeglad Elektrotechniczny. 2016; 92(8): 162–165.
- 27. Wunderlich D., Gutser R., Fantz U. PIC code for the plasma sheath in large caesiated RF sources for negative hydrogen ions, Plasma Sources Sci. Technol. 2009; 18(4): 045031.
- 28. Boeuf J.P., Claustre J., Chaudhury B., Fubiani G. Physics of a magnetic filter for negative ion sources. II. E × B drift through the filter in a real geometry, Phys. Plasmas. 2012; 19(11): 113510.
- 29. Turek M., Sielanko J. Simulations of negative ion extraction from a multi-aperture ion source in the presence of the magnetic filter, Vacuum. 2009; 83(S1): 256–261.
- 30. Turek M., Sielanko J., Franzen P., Speth E. Influence of transversal magnetic field on negative ion extraction process in 3D computer simulation of the multi-aperture ion source AIP Conf. Proc. 2006; 812(1): 153.
- 31. Fantz U., Franzen P., Kraus W., Berger M., ChristKoch S., Fröschle M., R. Gutser, Heinemann B., Martens C., McNeely P., Riedl R., Speth E., Wünderlich D. Negative ion RF sources for ITER NBI: status of the development and recent achievements, Plasma Phys. Control. Fusion. 2007; 49(12B): B563.
- 32. Birdsall C.K., Langdon A.B. Plasma Physics Via Computer Simulation, McGraw-Hill, 1985.
- 33. Courant R., Friedrichs K.O., Levy H. Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 1928; 100(1): 32–47.
- 34. della Valle E., Marracino P., Setti S., Cadossi R., Liberti M. and Apollonio F., Magnetic molecular dynamics simulations with Velocity Verlet algorithm, 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, QC 2017; 1–4. DOI: 10.23919/URSIGASS.2017.8105168
- 35. Ma S., Sydora R.D., Dawson J.M. Binary collision model in gyrokinetic simulation plasmas, Comp. Phys. Comm. 1993; 77(2): 190–206.
- 36. Boeuf J.P., Chaudhury B., Garrigues L. Physics of a magnetic filter for negative ion sources. I. Collisional transport across the filter in an ideal, 1D filter Physics of Plasmas. 2012; 19(11): 113509.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4884cb77-ce05-4e1d-b833-0f180498f42f