PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conceptual approach to valuation of climate change in EU countries through the prism of economic activities

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In our days' countries pursue not just to have higher or maintain economic growth, but society faces another challenge – to combat climate change: to slower increase of global temperature by decreasing amount of green gas emission. Globalization processes have increased green gas emission. The problem of climate change becomes an overall problem of all countries, as green gas emissions produced by any country has an overall impact on environment of the earth. Public administration and public policies face the problem how to combat climate change not constraining the economy too much. The purpose of the paper is to evaluate the extent to which EU countries are affected to climate change according economic and social factors of countries that can be seen as drivers of green gas emissions. The study relates green gas emission intensity to the extent to which the country is possible to be exploded to climate change according to its data on industry, energy, waste, and agriculture of EU countries. TOPSIS method is used to rank EU countries in combating climate change. The conceptual approach to ranking climate change through the prism of countries economic activities is developed. There are some research limitations – statistical data on the industry, energy, waste, agriculture is limited in order to fulfil the tasks of the research.
Wydawca
Czasopismo
Rocznik
Tom
Strony
80--88
Opis fizyczny
Bibliogr. 35 poz., fig., tab.
Twórcy
  • Vilnius Gediminas technical university; Vilnius; Lithuania
  • Vilnius Gediminas technical university; Vilnius; Lithuania
Bibliografia
  • [1] Aan, M., Rahim, R., Tinggi, S., & Manajemen, I. (2017). Technical Approach of TOPSIS in Decision Making. International Journal of Recent Trends in Engineering and Research, 3(8), 58–64. https://doi.org/10.23883/ijrter.2017.3388.wpyuj.
  • [2] Adzawla, W., Sawaneh, M., & Yusuf, A. M. (2019). Greenhouse gasses emission and economic growth nexus of sub-Saharan Africa. Scientific African, 3. https://doi.org/10.1016/j.sciaf.2019.e00065.
  • [3] Agovino, M., Casaccia, M., Ciommi, M., Ferrara, M., & Marchesano, K. (2019). Agriculture, climate change and sustainability: The case of EU-28. Ecological Indicators, 105 (June 2017), 525–543. https://doi.org/10.1016/j.ecolind.2018.04.064.
  • [4] Aldy, J. E., & Pizer, W. A. (2016). Alternative metrics for comparing domestic climate change mitigation efforts and the emerging international climate policy architecture. Review of Environmental Economics and Policy, 10(1), 3–24. https://doi.org/10.1093/reep/rev013.
  • [5] Antonakakis, N., Chatziantoniou, I., & Filis, G. (2017). Energy consumption, CO2 emissions, and economic growth: An ethical dilemma. Renewable and Sustainable Energy Reviews, 68(September 2016), 808–824. https://doi.org/10.1016/j.rser.2016.09.105.
  • [6] Balafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Van Der Wal, T., Soto, I., Gómez-Barbero, M., Barnes, A., & Eory, V. (2017). Precision agriculture technologies positively contributing to ghg emissions mitigation, farm productivity and economics. Sustainability (Switzerland), 9(8), 1–28. https://doi.org/10.3390/su9081339.
  • [7] Bie, W., Gradziuk, P., Golonko, M., Gołasa, P., Wysoki, M., Gradziuk, B., Siedlecka, A., & Gromada, A. (2021). Sources of Greenhouse Gas Emissions in Agriculture , with Particular Emphasis on Emissions from Energy Used. 1–20.
  • [8] Bilgili, F., Koçak, E., & Bulut, Ü. (2016). The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach. Renewable and Sustainable Energy Reviews, 54, 838–845. https://doi.org/10.1016/j.rser.2015.10.080.
  • [9] Burck, J., Hagen, U., Höhne, N., Nascimento, L., Bals, C., Burck, J., Hagen, U., Höhne, N., Nascimento, L., Bals, C., Brown, A., & Longwitz, J. (2020). Results 2020.
  • [10] Cai, Y., Sam, C. Y., & Chang, T. (2018). Nexus between clean energy consumption, economic growth and CO2 emissions. Journal of Cleaner Production, 182, 1001–1011. https://doi.org/10.1016/j.jclepro.2018.02.035.
  • [11] Camilleri-Fenech, M., Oliver-Solà, J., Farreny, R., & Gabarrell, X. (2018). Where do islands put their waste? – A material flow and carbon footprint analysis of municipal waste management in the Maltese Islands. Journal of Cleaner Production, 195, 1609–1619. https://doi.org/10.1016/j.jclepro.2017.07.057.
  • [12] Chen, P. (2021). Effects of the entropy weight on TOPSIS. Expert Systems with Applications, 168 (January 2020), 114186. https://doi.org/10.1016/j.eswa.2020.114186.
  • [13] Didenko, N. I., Skripnuk, D. F., & Mirolyubova, O. V. (2017). Urbanization and Greenhouse Gas Emissions from Industry. IOP Conference Series: Earth and Environmental Science, 72(1). https://doi.org/10.1088/1755- 1315/72/1/012014.
  • [14] Eckstein, D., Künzel, V., Schäfer, L., & Winges, M. (2019). Global Climate Risk Index 2020. https://www.germanwatch.org/sites/germanwatch.org/files/20-2-01e Global Climate Risk Index 2020_14.pdf.
  • [15] European Commission. (2020). Commission proposal for a regulation: European Climate Law. Establishing the Framework for Achieving Climate Neutrality and Amending Regulation (EU) 2018/1999 (European Climate Law), 2020/0036. https://ec.europa.eu/info/sites/info/files/commission-proposal-regulationeuropean-climate-law-march-2020_en.pdf.
  • [16] Fernández Fernández, Y., Fernández López, M. A., & Olmedillas Blanco, B. (2018). Innovation for sustainability: The impact of R&D spending on CO2 emissions. Journal of Cleaner Production, 172, 3459– 3467. https://doi.org/10.1016/j.jclepro.2017.11.001.
  • [17] Ganda, F. (2019). The impact of innovation and technology investments on carbon emissions in selected organisation for economic Co-operation and development countries. Journal of Cleaner Production, 217, 469– 483. https://doi.org/10.1016/j.jclepro.2019.01.235.
  • [18] Gizaw, B. T. (2016). an Empirical Investigation on the Relationship Between Inflation and Economic Growth in Ethiopia. Thesis, 6(June), 6–9.
  • [19] Hao, L. N., Umar, M., Khan, Z., & Ali, W. (2021). Green growth and low carbon emission in G7 countries: How critical the network of environmental taxes, renewable energy and human capital is? Science of the Total Environment, 752, 141853. https://doi.org/10.1016/j.scitotenv.2020.141853.
  • [20] Huang, J., Jiang, N., Chen, J., Balezentis, T., & Streimikiene, D. (2021). Multi-criteria group decision-making method for green supplier selection based on distributed interval variables. Economic Research-Ekonomska Istraživanja, 1-16.
  • [21] Jurevičienė, D., Skvarciany, V., & Lagunavičiūtė, A. (2020). Factors influencing individuals’ decision-making and causing financial crisis. Journal of Business Economics and Management, 21(4), 1149-1164. https://doi.org/10.3846/jbem.2020.12890.
  • [22] Liao, H. C., Ren, R. X., Antucheviciene, J., Šaparauskas, J., & Al-Barakati, A. (2020). Sustainable Construction Supplier Selection by a Multiple Criteria Decision-making Method with Hesitant Linguistic Information. E&M Economics and Management, 23(4), 119–136. https://doi.org/ 10.15240/tul/001/2020-4-008.
  • [23] Liu, Y., Gao, C., & Lu, Y. (2017). The impact of urbanization on GHG emissions in China: The role of population density. Journal of Cleaner Production, 157, 299–309. https://doi.org/10.1016/j.jclepro.2017.04.138.
  • [24] Lyeonov, S., Pimonenko, T., Bilan, Y., Štreimikiene, D., & Mentel, G. (2019). Assessment of green investments’ impact on sustainable development: Linking gross domestic product per capita, greenhouse gas emissions and renewable energy. Energies, 12(20). https://doi.org/10.3390/en12203891.
  • [25] Miśkiewicz, R. (2021). The Impact of Innovation and Information Technology on Greenhouse Gas Emissions: A Case of the Visegrád Countries. Journal of Risk and Financial Management, 14(2), 59. https://doi.org/10.3390/jrfm14020059.
  • [26] Nieto, J., Carpintero, Ó., & Miguel, L. J. (2018). Less than 2 °C? An Economic-Environmental Evaluation of the Paris Agreement. Ecological Economics, 146(November 2016), 69–84. https://doi.org/10.1016/j.ecolecon.2017.10.007.
  • [27] Regulation (EU) 2021/783 of the European Parliament and of the Council of 29 April 2021 establishing a Programme for the Environment and Climate Action (LIFE), and repealing Regulation (EU) No 1293/2013 (Text with EEA relevance), PE/14/2021/INIT. Available online: http://data.europa.eu/eli/reg/ 2021/783/oj (accessed on 20 July 2021).
  • [28] Rahman, M. M. (2017). Do population density, economic growth, energy use and exports adversely affect environmental quality in Asian populous countries? Renewable and Sustainable Energy Reviews, 77 (September 2016), 506–514. https://doi.org/10.1016/j.rser.2017.04.041.
  • [29] Salim, R., Rafiq, S., Shafiei, S., & Yao, Y. (2019). Does urbanization increase pollutant emission and energy intensity? evidence from some Asian developing economies. Applied Economics, 51(36), 4008–4024. https://doi.org/10.1080/00036846.2019.1588947.
  • [30] Seo, S. N. (2017). Beyond the Paris Agreement: Climate change policy negotiations and future directions. Regional Science Policy and Practice, 9(2), 121–140. https://doi.org/10.1111/rsp3.12090.
  • [31] Sikora, A. (2020). European Green Deal – legal and financial challenges of the climate change. ERA Forum, 681–697. https://doi.org/10.1007/s12027-020-00637-3.
  • [32] Skica, T., Rodzinka, J., & Zaremba, U. (2020). The application of a synthetic measure in the assessment of the financial condition of LGUs in Poland using the TOPSIS method approach. Economics and Sociology, 13(4), 297-317. doi:10.14254/2071-789X.2020/13-4/19.
  • [33] Squalli, J. (2017). Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data. Energy, 127, 479–488. https://doi.org/10.1016/j.energy.2017.03.156.
  • [34] United Nations. (2015). Adoption of the Paris Agreement, Proposal by the President, Draft decision. Conference of the Parties, Twenty-First Session, 21932 (December), 32. http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf.
  • [35] Waheed, R., Chang, D., Sarwar, S., & Chen, W. (2018). Forest, agriculture, renewable energy, and CO2 emission. Journal of Cleaner Production, 172, 4231–4238. https://doi.org/10.1016/j.jclepro.2017.10.287.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-488368bf-4ca4-4f55-84f8-709dedeb72be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.