Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Rough Set Theory Workshop (RST’2015); (6; 29-06-2015; University of Warsaw )
Języki publikacji
Abstrakty
Rule-based knowledge bases are constantly increasing in volume, thus the knowledge stored as a set of rules is getting progressively more complex and when rules are not organized into any structure, the system is inefficient. The aim of this paper is to improve the performance of mining knowledge bases by modification of both their structure and inference algorithms, which in author’s opinion, lead to improve the efficiency of the inference process. The good performance of this approach is shown through an extensive experimental study carried out on a collection of real knowledge bases. Experiments prove that rules partition enables reducing significantly the percentage of the knowledge base analysed during the inference process. It was also proved that the form of the group’s representative plays an important role in the efficiency of the inference process.
Wydawca
Czasopismo
Rocznik
Tom
Strony
35--50
Opis fizyczny
Bibliogr. 19 poz., tab., wykr.
Twórcy
autor
- Institute of Computer Science, Silesian University, Będzińska 39, 41-200 Sosnowiec, Poland
Bibliografia
- [1] Latkowski R, Mikołajczyk M. Data decomposition and decision rule joining for classification of data with missing values. Lecture Notes in Artificial Intelligence, LNAI 3066, p 254–263, Springer Verlag. 2004. doi:10.1007/ 978-3-540-25929-9_30.
- [2] Nalepa G, Ligeza A, Kaczor K. Overview of Knowledge Formalization with XTT2 Rules. Rule-Based Reasoning, Programming, and Applications, LNCS 6826, p 329–336, Springer Verlag. 2011. doi:10.1007/978-3-642-22546-8_26.
- [3] Sikora M, Gudy´s A. CHIRA–Convex Hull Based Iterative Algorithm of Rules Aggregation. Fundamenta Informaticae, 2013;123(2):143–170, IOS Press. doi:10.3233/FI-2013-805.
- [4] Toivonen H, Klemettinen M, Ronkainen P, Hätönen K, Mannila H. Pruning and Grouping Discovered Association Rules. 1995.
- [5] Nowak-Brzezińska A,Wakulicz-Deja A. The way of rules representation in composited knowledge bases. Advanced In Intelligent and Soft Computing, Man - Machine Interactions, 2009;59:175–182. doi:10.1007/978-3-642-00563-3_17.
- [6] Nowak-Brzezińska A, Simiński R. Knowledge mining approach for optimization of inference processes in rule knowledge bases. Lecture Notes in Computer Science, 2012;7567:534–537. doi:10.1007/978-3-642-33618-8_70.
- [7] Pindur R, Susmaga R, Stefanowski, J. Hyperplane aggregation of dominance decision rules. Fundamenta Informaticae, 2004;61(2):117–137.
- [8] Skowron A, Pawlak Z, Komorowski J, Polkowski L. Rough sets perspective on data and knowledge. W. Kloesgen, J. Zytkow (Eds), Handbook of Data Mining and Knowledge Discovery, Oxford University Press, Oxford, 2002 p.134–149. ISBN:0-19-511831-6.
- [9] Sarker BR. The resemblance coefficients in group technology: A survey and comparative study of relational metrics. Computers & Industrial Engineering. 1996;30(1):103–116. doi:10.1016/0360-8352(95)00024-0.
- [10] Jain AK, Dubes RC. Algorithms for clustering data. New Jersey: Prentice Hall, Inc. 1988. ISBN: 0-13-022278-X.
- [11] Akerkar R, Sajja P. Knowledge-Based Systems. Jones & Bartlett Learning; 2010. ISBN-10:0763776475, 13:9780763776473.
- [12] Tilotma S, Navneet T, Deepali K. Study of difference between forward and backward reasoning. International Journal of Emerging Technology and Advanced Engineering 2012;2(10):271–273. ISSN: 2250-2459.
- [13] Miranker DP. TREAT: A better match algorithm for AI Production Systems. In: Proceedings of the sixth National conference on Artificial intelligence, vol. 1. AAAI’87, 1987. Seattle, Washington, p. 42–47. ISBN:0-934613-42-7. Available from: http://dl.acm.org/citation.cfm?id=1863696.1863704.
- [14] Hanson E, Hasan MS. Gator: An Optimized Discrimination Network for Active Database Rule Condition Testing; 1993.
- [15] Batory D. The LEAPS Algorithms. 1995. Available from: http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf;
- [16] Forgy CL. Rete: A Fast Algorithm for the Many Pattern Many Object Pattern Match Problem. Artificial Intelligence. 1981;19(1):17–37. doi: 10.1016/0004-3702(82)90020-0.
- [17] Weiner P. Linear pattern matching algorithms. In: Switching and Automata Theory, SWAT ’08. IEEE Conference Record of 14th Annual Symposium on; 1973. p. 1–11. ISSN 0272-4847. doi: 10.1109/SWAT. 1973.13. Available from: http://dx.doi.org/10.1109/SWAT.1973.13.
- [18] Wang YW, Hanson E. A Performance Comparison of the Rete and TREAT Algorithms for Testing Database Rule Conditions. Proceedings of the Eighth International Conference on Data Engineering. 1992; p. 88–97. doi:10.1109/ICDE.1992.213202.
- [19] Pedrycz W, Cholewa W. Expert Systems [in polish]. Silesian University of Technology, Poland, Section of Scientific Publications; 1987.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-48826f56-0bdc-4e3b-a2ec-efb06ccc59f4