PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Light scattering by horizontally oriented square pyramid in the Wentzel–Kramers–Brillouin approximation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research, we studied the sensitivity of the form factor of a pyramidal ice crystal in the Wentzel–Kramers–Brillouin (WKB) approximation to its geometrical characteristics: the shape, spatial orientation, aspect ratio and size parameter. Using the WKB method, we derive an analytical formula of the form factor of horizontally oriented square pyramid. We will begin this work by applying the WKB approximation to the case of a particle which rotates about its main axis. Then, we will move to deal with the case of a particle which rotates about an axis perpendicular to its main axis in a future work. In addition, the coefficient of extinction is also given. To illustrate our analytical results, some numerical examples are analyzed.
Czasopismo
Rocznik
Strony
213--228
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Laboratory of Theoretical Physics, Faculty of Sciences, Chouaib Doukkali University, PO Box 20, 24000 El Jadida, Morocco
  • Laboratory of Theoretical Physics, Faculty of Sciences, Chouaib Doukkali University, PO Box 20, 24000 El Jadida, Morocco
  • Laboratory of Theoretical Physics, Faculty of Sciences, Chouaib Doukkali University, PO Box 20, 24000 El Jadida, Morocco
  • Laboratory of instrumentation of measurement and control, Chouaib Doukkali University, PO Box 20, 24000 El Jadida, Morocco
  • Laboratory of Theoretical Physics, Faculty of Sciences, Chouaib Doukkali University, PO Box 20, 24000 El Jadida, Morocco
Bibliografia
  • [1] BOHREN C.F., HUFFMAN D.R., Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York 1983.
  • [2] VAN DE HULST H.C., Light Scattering by Small Particles, John Wiley & Sons, New York 1957.
  • [3] MISHCHENKO M.I., HOVENIER J.W., TRAVIS L.D., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Academic Press, San Diego 2000.
  • [4] KERKER M., The Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York 1969.
  • [5] KOKHANOVSKY A.A., Cloud Optics, Springer, Dordrecht 2006.
  • [6] TUCHIN V.V., Handbook of Optical Biomedical Diagnostics, Vol. PM107, SPIE Press, Bellingham 2002.
  • [7] LOPATIN V.N., PRIEZZEV A.V., APONASENKO A.D., SHEPELEVICH N.V., LOPATIN V.V., POZHILENKOVA P.V., PROSTAKOVA I.V., Methods of Light Scattering in Analysis of Dispersion Biological Media, Phys. Mat. Lit., Moscow 2004.
  • [8] FAN X., ZHENG W., SINGH D.J., Light scattering and surface plasmons on small spherical particles, Light: Science and Applications 3, 2014, article e179, DOI: 10.1038/lsa.2014.60.
  • [9] TSANG L., KONG J., Scattering of Electromagnetic Waves, Theories and Applications, John Wiley & Sons, New York 2004.
  • [10] MIE G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Annalen der Physik 330(3), 1908, pp. 377–445, DOI: 10.1002/andp.19083300302.
  • [11] Barber P.W., Hill S.C., Light Scattering by Particles: Computational Methods, World Scienfitic Publishing, Singapore 1990.
  • [12] SHAPOVALOV K.A., Light Scattering by a Prism and Pyramid in the Rayleigh-Gans-Debye Approximation, Optics 2(2), 2013, pp. 32–37, DOI: 10.11648/j.optics.20130202.11. .
  • [13] KERKER M., WANG D.S., GILES C.L., Electromagnetic scattering by magnetic spheres, Journal of the Optical Society of America 73(6), 1983, 765–767, DOI: 10.1364/JOSA.73.000765.
  • [14] BOHREN C.F., HUFFMAN D.R., Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York 1998.
  • [15] GRUY F., Fast calculation of the light differential scattering cross section of optically soft and convex bodies, Optics Communications 313, 2014, pp. 394–400, DOI: 10.1016/j.optcom.2013.10.049.
  • [16] RAYLEIGH J.W.S., On the propagation of waves through a stratified medium with special reference to the question of reflection, Proceedings of the Royal Society A 86, 1912, pp. 207–226, DOI: 10.1098/rspa.1912.0014.
  • [17] JEFFREYS H., On certain approximate solutions of lineae differential equations of the second order, Proceedings of the London Mathematical Society s2-23(1), 1925, pp. 428–436, DOI: 10.1112/plms/s2-23.1.428.
  • [18] SAXON D.S., Modified WKB methods for the propagation and scattering of electromagnetic waves, IRE Transactions on Antennas and Propagation 7(5), 1959, pp. 320–323, DOI: 10.1109/TAP.1959.1144773.
  • [19] DEIRMENDJIAN D., Theory of the solar aureole, part II: applications to atmospheric models, Ann. Geophys. 15, 1959, pp. 218–249.
  • [20] KLETT J.D, SUTHERLAND R.A., Approximate methods for modeling the scattering properties of nonspherical particles: evaluation of the Wentzel-Kramers-Brillouin method, Applied Optics 31(3), 1992, pp. 373–386, DOI: 10.1364/AO.31.000373.
  • [21] SHEPELEVICH N., PROSTAKOVA I., LOPATIN V., Extrema in the light-scattering indicatrix of a homogeneous spheroid, Journal of Quantitative Spectroscopy and Radiative Transfer 63(2–6), 1999, pp. 353–367, DOI: 10.1016/S0022-4073(99)00024-2.
  • [22] BELAFHAL A., IBNCHAIKH M., NASSIM K., Scattering amplitude of absorbing and nonabsorbing spheroidal particles in the WKB approximation, Journal of Quantitative Spectroscopy and Radiative Transfer 72, 2002, pp. 385–402, DOI: 10.1016/S0022-4073(01)00131-5.
  • [23] LAMSOUDI R., IBN CHAIKH M., Form factor and efficiency coefficient of the extinction for a parallelepiped (or cubic) particle in the WKB approximation, ARPN Journal of Engineering and Applied Sciences 11(23), 2016, pp. 13580–13586.
  • [24] IBN CHAIKH M., LMSOUDI R., BELFHAL A., Light scattering by hexagonal ice crystal in the Wentzel–Kramers–Brillouin approximation, Optical and Quantum Electronics 48, 2016, article 466, DOI:10.1007/s11082-016-0738-0.
  • [25] ISHIMARU A., Wave Propagation and Scattering in Random Media Volume I-Single Scattering and Transport Theory, Academic Press, New York 1978.
  • [26] SUN W., FU Q., Anomalous diffraction theory for arbitrarily oriented hexagonal crystals, Journal of Quantitative Spectroscopy and Radiative Transfer 63(2–6), 1999, pp. 727–737, DOI: 10.1016/S0022-4073(99)00046-1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-487d76f9-5e62-4450-ae26-d516ceb3c71e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.