
Biuletyn WAt 
Vol. lXViii, nr 1, 2019

Artificial intelligence for software development —  
the present and the challenges for the future

ŁUKASZ KORZENIOWSKI, KRZYSZTOF GOCZYŁA

Gdańsk University of Technology, Faculty of Electronics,  
Telecommunications and Informatics, 11/12 Narutowicza Str.,  

80-233 Gdańsk, Poland, lkorzeni@gmail.com, kris@eti.pg.edu.pl

Abstract. Since the time when first CASE (Computer-Aided Software Engineering) methods and tools 
were developed, little has been done in the area of automated creation of code. CASE tools support 
a software engineer in creation the system structure, in defining interfaces and relationships between 
software modules and, after the code has been written, in performing testing tasks on different levels 
of detail. Writing code is still the task of a skilled human, which makes the whole software development 
a costly and error-prone process. It seems that recent advances in AI area, particularly in deep learning 
methods, may considerably improve the matters. The paper presents an extensive survey of recent work 
and achievements in this area reported in the literature, both from the theoretical branch of research 
and from engineer-oriented approaches. Then, some challenges for the future work are proposed, 
classified into Full AI, Assisted AI and Supplementary AI research fields.
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1. Introduction

For the past 30 years, software engineering industry has been struggling to 
introduce repeatable processes of software development and to improve their effi-
ciency. The experience of building large scale systems proved that manual software 
development processes are very error-prone and it is the human being their biggest 
power but also the weakest link. Although the concept of automated creation of pro-
grams was in the area of interest of researchers since 1960’s, lack of powerful enough 
hardware prevented this idea from being truly explored. Introduction of CASE tools 
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brought the promise of minimizing the number of human mistakes by following 
well-defined processes decently supported by dedicated software. Despite recent 
significant loss of focus, mostly due to common adoption of agile processes, CASE 
has established a firm division of software engineering disciplines which is commonly 
shared and understood in software development industry today. 

Recent improvements in processing capabilities of modern hardware and software 
platforms like cloud computing, supported by significant advances in development 
of algorithms, have caused machine learning (ML) to gain its momentum. After 
establishing its position in areas like image classification or speech recognition, 
researchers are looking into using machine learning for automated construction 
of programs. There are several practical reasons for introducing ML (and, more 
general, artificial intelligence — AI) methods and techniques into software deve-
lopment processes:

— traditional process, regardless of the methodology applied, is highly manual 
and therefore expensive and error-prone;

— the COTS (Commercial Off-The-Shelf) approach turns out to be equally 
expensive: additional effort is required to find and acquire appropriate 
software solutions; ready-to-use software quickly becomes obsolete, which 
increases maintenance cost, etc.), so companies are reluctant to adapt their 
internal processes to existing solutions;

— there is a lack of software developers on the job market.
In this paper we present a survey of current achievements in employing AI into 

software development processes conducted using an exploratory literature review. 
Early this year, two papers were published that present classification of current 
research directions in this area. Gottschlich et al. [1] identify three main areas 
of development which focus around the characteristics of learning process: intention, 
invention, and adaptation. The authors describe the landscape of research from the 
perspective of enhancements that particular research directions can bring in these 
essential capabilities of learning. Kant [2] summarizes recent advances in pro-
gram synthesis putting most attention at different organizations of neural network 
architectures and corresponding learning algorithms that leverage them. The two 
papers, however, cover only selected excerpts of the work that has been done so far 
and do not refer holistically to software engineering processes. Our work extends 
these surveys with the practical applicability dimension by putting recent research 
on automated programming in the context of software development process. Recent 
advances in automated software systems development are presented here from the 
point of view of classically understood disciplines of software development:

— requirements specification,
— system design,
— system development,
— system verification.
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The structure of the paper is as follows: In Sections 2, 3, 4, and 5 we present 
current research directions and summarize reported achievements in introducing 
AI methods into the abovementioned four disciplines, or stages, of software develop-
ment. To the best of our knowledge, there exists no such a holistic overview of this 
research area. In Section 6 we contribute to the field by proposing concrete subjects 
for further research, formulating them from the software engineering point of view. 
We classify them into Full AI, Assisted AI, and Supplementary AI research fields which 
represent different classes of expectations that researchers could express against 
usage of AI for software development. Full AI groups research directions, aimed at 
gaining the ability to automatically generate any program based on a specification 
given, Assisted AI focuses on cooperation possibilities between a business user and 
AI towards semi-automated program creation while Supplementary AI represents 
research around using AI to improve performance/quality of manual software 
development process. These classes of research are presented in decreasing order 
of complexity and increasing order of feasibility and applicability in a short-time 
horizon. Section 7 concludes the paper.

2. Requirements specification

Gathering requirements for building software systems has always been a major 
challenge. Regardless of the level of formalism dictated by the process being used, 
capturing the intention of business users was a long and rather tedious task. In 
practice, it is often much easier for business user to verify whether the output 
of a program is correct or not than to specify the procedure of producing this output 
to the level of detail necessary for a programmer to develop the software. Utilizing 
machine learning techniques to create programs automatically leads to interesting 
considerations regarding the way to specify such programs.

Typically, machine learning employs some sort of neural network that is trained 
using a set of examples expressing the desired behaviour of the program. It is then 
expected that through learning the neural network would generalize the learned 
behaviour and be able to correctly respond to an input that differs from examples 
used during training. The set of training examples forms partial specification of the 
problem and it is the role of learning algorithm to determine the rest. This approach 
has proven to be very successful in many areas like image or speech recognition, 
especially with usage of deep neural networks fed with large set of training exam-
ples. On the other hand, trying to employ such approach for automated creation 
of programs would meet a number of obstacles. Assuming that it is a business user 
that needs to provide this partial specification, is she able to prepare a big enough 
training set for the learning algorithm to discover her intention? If that is not 
possible or impractical then is there any other way of providing the intention? This 



18 Ł. Korzeniowski, K. Goczyła

section explores several research directions in this area and presents related recent 
work (see Figure 1).

Fig. 1. Research directions in the requirements specification area

2.1. Reducing required size of training set

This problem is often referred to as one-shot learning or more general k-shot 
learning where learning algorithm is expected to provide reasonable results after 
being trained with only k input-output examples.

A notable work in this field was described by Gulwani in [3], which presents 
the FlashFill algorithm for automated creation of string manipulation programs 
in Excel spreadsheet (see an example in Figure 2). The authors present a solution 
that is able to determine a program using only a very limited set of input-output 
examples (typically up to 4). What is especially interesting from the point of view 
of automated software development is the interactive approach that is taken to 
synthesize programs. The algorithm asks a business user for a pair of input-output 
strings and tries to determine a suitable program. User tries to use the program but 
if she finds it to generate wrong output for some other input she provides another 
training example, and the cycle repeats. The underlying mechanism used in the 
algorithm is the program synthesis from basic string manipulation functions and 
using dedicated data structure to efficiently search the space of all possible solutions 
and find the one that fits best into the set of given input-output examples. While 
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the mentioned paper describes the program synthesis in a fairly simple domain 
of string manipulation, the approach of interaction between a business user and 
a learning algorithm is a dream-come-true in the area of expressing requirements. 
The low number of required examples, together with ease of expression, make it 
very simple for business users to utilize. Of course, as the source domain becomes 
more complicated, the difficulty of such synthesis increases dramatically.

Fig. 2. A FlashFill example — the algorithm learns the string manipulation formula to extract ZIP 
code embedded in user data

Chen et al. [4] describe an approach to create programs composed from a set 
of predefined triggers and actions based on a natural language specification. The 
work focuses on the If-Then program domain which consists of simple programs 
expressed with set of conditions and corresponding actions. The goal of learning is 
to find the correct program based on a natural language description. Instead of using 
an individual training set for each such problem, the authors assume usage of a sha-
red repository of natural language descriptions (e.g. IFTTT.com) which effectively 
serves as a common training set. Based on analysis of existing descriptions, the 
learning algorithm applies the attention approach (further explained in section 4.1) 
to determine keywords in the natural language description that would represent 
conditions and actions in the best way and then translates such a description into 
a program. An interesting scenario is described when the already trained system 
is extended with a newly available trigger or an action. In such a scenario, the 
repository initially lacks natural language descriptions using the new features. The 
goal for the learning algorithm is to gain good level of prediction for new features 
while not deteriorating prediction accuracy for the existing ones. This effectively 
represents the maintenance scenario in classical software development processes 
where after having already a working software a change in its specification takes 
place. Although prediction accuracy for new features achieved by the authors is 
over 80%, it uncovers the difficulty of introducing a change into an automatically 
created program — a special way of training is required and the initial results for 
new features are much worse that for existing ones.
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2.2.  Rich supervision

A lot of current research efforts in the area of automated construction of pro-
grams achieve some notable improvements but require large training sets. Taken 
the current results of efforts to reduce the required size of training set, it seems that 
achieving the state when the learning process can be supervised by a human is rather 
far ahead of researchers. One might also conclude that it is unrealistic to expect 
a learning algorithm to find correct solution based only on input-output examples.

An alternative solution could be to provide more information to a learning 
algorithm (so called rich supervision). Solar-Lezama [5] describes a technique called 
sketching where a user presents a partial program with a number of placeholders 
to be filled in during the learning process (see Figure 3). Apart from the program 
sketch, the learning algorithm is presented a set of test cases that serve to validate 
concrete program candidates discovered during learning. The author proves the 
hypothesis that well-formed generic sketch, supported by a relevantly small number 
of test cases, allows to clearly define the intention of the user.

Fig. 3. Example of program sketch from Solar-Lezama [5] — a hint is provided to the learning  
algorithm that some iteration over list will be required

Looking at this approach from the point of view of classical software development 
processes, it can be observed that it is of potentially huge practical value. It utilizes 
common techniques like Test Driven Development and the skill set of today’s pro-
grammers which would specify their intention with programming. As it can be seen 
from the mentioned paper, this approach allows also to synthesize quite complex 
programs, e.g. AES encryption algorithm. On the downsides, it can be pointed out 
that this approach places a software developer as the one to provide partial spe-
cification of the program which still requires additional step of gathering system 
requirements from business users. It shows, however, that using rich supervision 
can be an interesting research direction.
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2.3.  Use of natural language specifications

The previous subsection describes some proposal for expressing partial specifi-
cation of a program to be built utilizing programming itself as a form of expression. 
But instead of trying to introduce a formal way of providing partial specification, 
one could provide a full specification, but stated less formally. One example of such 
an approach was already described by Chen et al. [4] for simple If-Then programs. 
Another recent attempts are described by Xu et al. [6], Zhong et al. [7], and Yagh-
mazadeh et al. [8] where the authors synthesize SQL queries based on a natural 
language description (see Figure 4). Although generating SQL queries from a prede-
fined database schema is much easier task than creating full-fledged programs with 
complex syntax running over unknown data model, it is still a promising direction. 
Capability of natural language to describe a problem might give valuable hints for 
algorithms to direct their learning. A huge benefit is that such specification allows 
for a direct communication between business user and learning algorithms without 
need to learn any additional skills or tools to facilitate this communication. At the 
same time, the biggest challenge would be the inherent ambiguity of natural language.

Fig. 4. SQL query sketch used by Xu et al. [6]. Tokens starting with $ are placeholders to be filled 
in by a neural network

3. System design

In classic software development processes there is a phase (formal or informal) 
when a big system is decomposed into smaller subsystems and those are further 
divided into modules with clear responsibilities. At this point, the core architec-
ture of the system is usually formed with well-defined interfaces, contracts, and 
communication styles between constituent modules. Agile processes like Scrum 
or eXtreme Programming lack an explicit phase of system design but during each 
iteration of the process development team makes concrete decisions on software 
architecture, responsibility of individual services and their cooperation patterns. 
Regardless of the software development process or architecture style used, the ulti-
mate goal of these activities is to reduce the impact of future changes on the whole 
system. By introducing clear separation of responsibility between components, it 
is hoped that any changes would remain local.
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If we look at automated creation of programs, especially with the usage of neu-
ral networks, then modularization is neither obvious nor easy to achieve. Neural 
networks are usually trained as a whole and there is no notion of components. This 
would effectively prevent such solutions from widespread use as the impact of intro-
ducing even a little change would be very difficult to predict and the risk hard to 
accept. There are, however, some promising research directions, described below 
in this section, that have the potential of addressing this problem (see Figure 5).

Fig. 5. Research directions in the system design area

3.1.  Component-based program synthesis

In order to achieve modularity, each of the components constituting a bigger 
program should be trained separately. But what then remains is the problem of lear-
ning how to synthesize the program from those components. 

Authors of Neelkantan et al. [9] describe their attempt to utilize basic arithmetic 
and logic functions in the process of learning a neural network. The specification for 
the program is given by a query expressed in natural language (in a similar fashion 
that the one described by Chen et al. [4]). This time, however, the logic of the pro-
gram may be significantly more complex. Learning program takes place in a fixed 
number of steps. Initially, the program is constructed with predefined functions 
and in each subsequent step it is enhanced. Experiments done by the authors show 
that their approach outperforms Long Short-Term Memory (LSTM, Hochreiter-
-Schmidhuber [19]) based methods.

Another attempt of this kind is described by Reed et al. [10]. Here, also a pro-
gram being learned is composed from lower-level programs, but the authors focus 
on learning only the composition part while the constituent programs are not even 
executed. The authors have also decided to use rich supervision for learning. Instead 
of presenting input-output examples, they use pairs of input and corresponding 
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program execution trace (equivalent of call stack in programming languages). The 
learning algorithm is not focused on converging to particular output but to parti-
cular execution trace. This approach has been proved to possess some interesting 
properties. In the first place, it is generic: the same target program may use different 
sets of subprograms, which is the essence of modularity — one implementation can 
be exchanged with another one as long as its contract remains the same. Secondly, 
the training goal of an underlying neural network is only to learn how to compose 
lower-level programs, which abstracts from their complexity. This allows the network 
to be much simpler and learning process much more efficient as compared to models 
where a big program is trained as a whole. Moreover, this idea opens the possibility 
of automatic composition of programs from subprograms that are also automatically 
generated and the level of nesting does not influence the learning efficiency. Addi-
tionally, the authors discuss an approach towards embracing change. They suggest 
a procedure of introducing a new “feature” (a new subprogram) into the learning 
algorithm in a way that would not cause deterioration of neural network’s capabilities 
in solving previously trained set. Last but not least, the paper considers a multi-task 
program which is a single program having the functionality of multiple individual 
programs. The authors prove that accuracy of the multi-task program remains at 
the same level as that of individual programs trained separately. This shows a great 
potential of automatic synthesizing not only simple algorithms but also complex 
programs solving real-world problems. 

3.2.  Using code repositories to extract building blocks

While the previous direction presents a top-down approach to automated pro-
gram construction, also a bottom-up approach can be considered. In this scenario, 
higher-level programs would be discovered by using the source code of lower level 
subprograms. The extremely fast growing code repositories like GitHub could serve 
as a great source of such subprograms. 

One example of this approach is described by Pavlinovic et al. [11]. The authors 
present a method for suggesting code snippets to a programmer based on the know-
ledge gathered from code repositories. The process consists of two steps. At the first 
step, repository mining takes place to extract the most commonly used snippets. 
The second step is triggered on user demand; it analyzes the code that was already 
manually created and tries to find suitable snippets that would fit best. The decision 
on which snippet to apply is left to the programmer. 

Although this is a very basic example, it reveals the potential of exploring 
existing code repositories and extracting valuable information from them. Ano-
ther potential application is described by Bornholt et al. [13] where the authors 
propose usage of code repositories to reveal sketches that would serve as a basis for 
learning programs following  the Programming by Sketching approach described 
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by Solar-Lezama [5]. Xin et al. [12], in turn, explore the potential of source code 
gathered in repositories to automatically detect issues in existing programs. Although 
all of these attempts currently manage to deal only with problems of limited scale, 
usage of existing large code bases is definitely a direction that is worth of exploring. 
It is also the direction that can bring artificial intelligence to the next level as it opens 
the possibility of learning new capabilities by exploring the existing knowledge. 

4. System development

Programming is the part of software development process that still remains 
purely manual. Over the last years, significant progress has been made in the area 
of tools aiding software developers (e.g. automated generation of code snippets or 
hints for improving code quality) but all these attempts place a human in the center 
of programming activity. The consequence of the assumption that programming 
is a manual task is conclusion that the code written must be understandable for 
humans. This leads to the whole big area of code quality, design patterns, test driven 
development (TDD) approach or general rules of writing maintainable programs 
which have been intensively explored by researchers over last 20 years. On the 
other hand, if we assume that it is not a human that is writing the code, then some 
of these rules may no longer apply. For example, automatically generated code 
potentially does not have to be easily readable for humans as it can be also mainta-
ined automatically. Although automated programming is a very young discipline 
and currently far away from being able to write/maintain big programs, this shows 
that we should not necessarily think of automatically generated programs as we do 
of traditionally developed software.

Machine learning algorithms have proven over recent years to work very well 
in the areas like image or speech recognition. These are usually some form of clas-
sification problems where the boundaries between different classes are blurred. 
In these areas, soft boundaries between classes are probably expected as there are 
image or voice samples that are hard to qualify into certain class even for a human. 
However, this may be a major challenge in adoption of machine learning approach 
to automated programming. The nature of program creation requires usage of sharp 
rather than fuzzy logic to implement many real-world business requirements.

The recent research in the field of automated programming focuses around 
three major approaches:

— program synthesis,
— program induction,
— hybrid of the two above.
Program synthesis, discussed in [1, 14], is the problem of finding the source 

code of a program (in some arbitrary programming language) that meets a set 
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of given constraints. The constraints may form either a full specification (deduc-
tive program synthesis, Manna-Waldinger [15, 16]) or only a partial one. Such 
an approach usually utilizes some form of a solver based on Satisfiability Modulo 
Theories (SMT, Barret et al. [17]) and Boolean satisfiability (SAT) algorithms which 
search the space of possible programs that would meet given criteria. The search 
space usually grows exponentially with the size of the problem. The outcome of this 
method is the source code which can be interpreted by humans, so its correctness 
may be manually verified.

Program induction tries to use machine learning methods to search for weights 
in a neural network such that the network provides expected output for a given 
training set. Usually, variants of recurrent neural networks (RNN) are used for this 
purpose. Such a trained neural network forms the program for which the source 
code is not available, so its correctness cannot be easily verified. 

The abovementioned approaches have both benefits and drawbacks. Program 
synthesis requires searching over very big space of possible programs which may 
be infeasible, but produces a program whose correctness can be proven. Program 
induction, in turn, can be much more effective in finding a solution but there is 
always uncertainty whether it is correct or not. This leads to recent interest of rese-
archers in hybrid approaches. Balog et al. [18] for example use machine learning 
to drive the search using SMT-based algorithm.

This section explores recent work related to automated construction of pro-
grams (see Figure 6).

Fig. 6. Research directions in the system development area.

4.1.  Improve efficiency of program synthesis

Regardless the approach taken, one of the important directions of research is 
to make automated programming more effective. This can be achieved in a number 
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of ways from requiring less training effort (less input-output examples), through 
limiting the domain size to being able to search program space more accurately.

In basic RNN, the network layers are fully connected — each node in a given 
layer is connected to every node in the next layer. For large input sizes, the learning 
process of such a network proves to be inefficient. Lecun et al. [20] present a multi-
-layer neural network architecture called convolutional neural network (CNN) that 
reduces the number of connections and therefore allows much faster learning. It 
is based on the idea that particular features of the input that neural network needs 
to discover are local, so there is no need to connect neurons representing the parts 
of the input that are “far away” from each other. This allows to reduce the number 
of network weights to be learned significantly. Additional mechanisms for dropping 
nodes and connections randomly (with given probability) during network training 
increase training speed even more. This approach has been originally used for image 
classification or handwriting recognition, but Kaiser-Sutskever [21] demonstrates 
its usage to learn arithmetic operations on long binary representations of numbers. 

An extension of the idea of local connections in neural network is the concept 
of attention which helps finding the parts of the input that are valuable for the 
learning process. With the attention-based approach, during the learning process 
probability distribution over the input is generated which represents the probability 
of information encoded in input to be valuable. This allows to increase the efficiency 
of learning process by focusing mostly on meaningful information. Some examples 
of using attention-based approach to program synthesis are described by Chen et 
al. [4] and Graves et al. [22].

Fig. 7. Example program synthesized by DeepCoder (from Balog et al. [18]). From the right: program 
description, input-output example and synthesized program in DeepCoder language DSL

Another approach to increasing efficiency of learning is to constrain the domain 
of programs being searched during the learning process. Balog et al. [18] present 
the DeepCoder framework targeted at automated finding programs that solve 
typical programming puzzles (see Figure 7). The authors assume that such puzzles 
are defined by a set of input-output sequences of integers and the goal is to find 
a correct program that transforms inputs to corresponding outputs. They intro-
duce a domain specific language consisting of typical collection transformations 
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like sorting, extraction of first/last element, applying a mapping function to each 
element, etc. Then, they use neural network that determines the probability of each 
of the functions to appear in the target program based on the input-output pairs. 
This probability distribution is used to drive program synthesis using an SMT-based 
solver. The results show that by reducing the domain size and using the hybrid 
approach (program synthesis + program induction) an order of magnitude speedup 
in the learning process can be achieved.

4.2.  Broaden the range of possible programs that can be automatically 
synthesized

One way of increasing accuracy of program space search could be to introduce 
a special structure over recurrent neural network that would make it easier for the 
network to discover “constructs” that are typical for traditional programming, like 
usage of memory, loops or conditional statements.

Hochreiter-Schmidhuber [19] describes a special kind of recurrent neural 
network architecture called Long Short-Term Memory (LSTM) that approaches 
the problem of error propagation over a series of time steps. It introduces the con-
cept of a memory cells which constitute the hidden layer of the network and allow 
for much faster learning of temporal dependencies between network’s inputs and 
outputs, even for those that occur over long periods of time. Although LSTM was 
introduced already in 1997, its recent successful applications in the area of speech 
recognition have brought it into interest of researchers and many of recently propo-
sed network architectures used in program induction derive from these concepts.

Vinyals et al. [23] introduce an architecture of neural network, called a pointer 
network, which addresses the problem of input of variable size. In their approach, 
the authors focus on a couple of well-known problems involving geometry: finding 
a convex hull, Deluanay triangulation, and Travelling Salesman Problem (TSP). In 
each of those problems, the input is a set of coordinates in the Cartesian coordinate 
system. The novelty of this approach is that instead of representing the output, 
as a set of edges in the Cartesian space, they rather represent it as an ordered list 
of pointers to the input coordinates. Throughout learning, they use attention to 
pick next pointer with the highest probability. Such strategy proves to be very suc-
cessful in solving problems involving path manipulation. The pointer network can 
provide very good heuristics for the TSP problem for input sizes up to 20 vertices, 
but fails both in terms of accuracy and validity of solutions for larger inputs. Still, 
this is an interesting approach that strives for exploiting an automated approach to 
programming for solving combinatorial problems.

Neural Turing Machine, described by Graves et al. [22], is a proposal of an 
architecture where a neural network is coupled with an external memory, which 
resembles the Turing Machine or the Von Neumann architecture. At each step, 
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the neural network reads and writes data into the memory. The attention process 
determines probability of certain data to be read or written. This allows the neural 
network to learn how to use the memory rather than simply to apply transforma-
tion over the input and opens up the research for solving problems employing the 
notion of state.

5. System verification

Current software development processes usually include a phase when the overall 
correctness of the system is verified. Most often this is done by some form of automa-
ted or manual testing. The purpose of this approach is to reveal defects that could be 
introduced by the software developer while encoding requirements into a program. 
However, in the domain of automated creation of programs’ defects are of a different 
nature. If automatically created program does not perform as expected, then it might 
be caused either by learning algorithm not being trained to the necessary extent or by 
the neural network not being able to generalize well enough. This creates the need for 
humans to be able to better understand the internal mechanics of an automatically 
created program, which is not an easy task when neural networks are involved. Figure 
8 presents some work in the field of visualizing internals of neural networks.

Fig. 8. Research directions in the system verification area

5.1.  Explainable artificial intelligence

Automated programming can come in two flavours — in the one, the output 
of learning is a source code of synthesized program; in the other, the output program 
is only encoded in neural network’s weights. At the first glance, it may seem that the 
source code representation gives significant advantage for being able to reason about 
the correctness of learned program, but in reality with large code this can easily 
become infeasible. Best practices for traditional programming provide guidelines for 
software developers to create easily understandable code, but even if we look at the 
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high quality source code of medium-sized systems, it is often very hard for a human 
to understand it fully. It can be expected that the code produced automatically will be 
even less understandable because it is not aimed at human’s inspection. 

An interesting research direction is the explainable artificial intelligence (XAI) 
which aims at providing some form of visual representation of neural network that 
would be relatively easy to understand for humans and would allow to reason about 
its correctness. Recently, a number of research papers have been published that 
propose a visualization of neural network internals for image classification problems 
(Zeiler-Frgus [24], Bach et al. [25], Montavon et al. [26]). They show how each pixel 
of the input image contributes to the overall image classification. Although hard to 
interpret, this visualization gives some insight into the neural network internals and 
allows a human for a coarse-grained assessment of whether the network operates 
as expected. It can be anticipated that this direction will gain on importance also 
in the domain of automated programming as it enters the areas related to human 
life, health, privacy or security on a larger scale.

6. Challenges

This paper presents categorization of research directions in the area of automated 
software development. One can, however, take a different perspective — from the 
point of view of the envisioned role of artificial intelligence in software development:

— Full AI — artificial intelligence will be capable of creating on its own any 
program specified by business user or by artificial intelligence itself;

— Assisted AI — artificial intelligence will not be able to create programs on its 
own; it will require human to cooperate in this process and contribute with 
her domain expertise;

— Supplementary AI — artificial intelligence will play supplementary role 
in the software development process; it will be able to assist in improving 
software quality.

Each of these visions can guide the further research and present different 
challenges. Full AI is where currently the majority of research takes place. Further 
development can be achieved with novel architectures of neural networks that are 
dedicated for solving specific classes of problems. Efficiency of learning process and 
accuracy of automatically created programs is another challenge. As current research 
focuses on rather narrow domains and synthesized programs are far less complica-
ted than those written manually, nowadays, this vision remains rather a long term 
goal and it is rather unlikely that industry will widely benefit from it in near future.

Assisted AI assumes that a human is irreplaceable in the process of software 
development (at least until Full AI matures), but can still benefit from artificial 
intelligence. As part of the cooperation between a human and AI, AI would have 
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to be engaged in current software development processes at each phase. It could 
help building ontologies based on natural language specifications, detect compo-
nents or help integrating them. A human, in turn, would have to supervise AI at 
each phase and introduce corrections to its decisions. One of the challenges would 
be creation of visual representation of semi-automatically created software that 
would help business users to reason about its correctness. Utilizing AI in multiple 
activities of current software development processes could lead to creation of a new 
process with artificial intelligence being in the center of it. This vision can be seen as 
an intermediate step in adoption of artificial intelligence in software development.

Supplementary AI would focus on utilizing artificial intelligence to improve current 
processes. Example challenges could be: increasing software reuse by detecting similar 
code fragments in corporate repositories, automated creation of common libraries, 
providing suggestions on code improvements, detecting defects, or automated cre-
ation of documentation (explanation of what program does) based on source code. 

The above presented visions should not be seen as alternatives. As current research 
does not allow us to definitively state to which extent we are able to utilize artificial 
intelligence in software development, these visions can be treated as different phases 
of practical implementation of research with Supplementary AI being the short-term, 
Assisted AI — mid-term and Full AI the long-term and the most advanced one.

7. Conclusions

Automated software development is still a fresh research topic and remains 
terra incognita, tempting to be explored by researchers and software engineers. 
According to reported results, from among techniques, described in Sections 2-5, 
only FlashFill has found its industry application. However, the recent years have 
brought some important progress in this domain. The recent important advances 
concern novel neural networks architectures, particularly in the class of recurrent 
neural networks, and learning approaches. In the paper we have presented how neural 
networks fit into traditional software development processes and pointed out some 
promising research directions, dividing it into three streams of research directions 
with different level of hopes that they may bring into software development industry.
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Ł. KORZENIOWSKI, K. GOCZYŁA

Sztuczna inteligencja w wytwarzaniu oprogramowania — stan aktualny  
i wyzwania na przyszłość

Streszczenie. Od czasu pojawienia się pierwszych metod i narzędzi CASE niewiele zrobiono w zakresie 
automatycznego wytwarzania oprogramowania. Narzędzia CASE wspierają deweloperów w tworzeniu 
struktury systemu, definiowaniu interfejsów i relacji między modułami oprogramowania oraz, po 
powstaniu kodu, w wykonywaniu zadań testowych na różnych poziomach szczegółowości. Pisanie kodu 
jest jednak nadal zadaniem wykwalifikowanego specjalisty, co powoduje, że cały proces wytwarzania 
oprogramowania jest kosztowny i podatny na błędy. Ostatnie postępy w obszarze sztucznej inteligencji, 
szczególnie w zakresie metod głębokiego uczenia maszynowego, mogą i powinny znacznie poprawić 
tę sytuację. W artykule przedstawiono przegląd dotychczasowych osiągnięć w tej dziedzinie, znanych 
z literatury przedmiotu, szczególnie w zakresie czysto teoretycznym, gdyż efekty inżynierskie znajdujące 
zastosowanie praktyczne są jak dotąd bardzo ograniczone. Następnie zaproponowano i opisano 
kilka kierunków przyszłych prac w tej dziedzinie, które zaklasyfikowano jako Full AI, Assisted AI 
i Supplementary AI, w kolejności wynikającej z oczekiwanego stopnia zautomatyzowania procesów 
wytwarzania oprogramowania.
Słowa kluczowe: wytwarzanie oprogramowania, sztuczna inteligencja, uczenie maszynowe, 
automatyczne generowanie kodu
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