PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A few-shot learning approach for COVID-19 diagnosis using quasi-configured topological spaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurate and efficient COVID-19 diagnosis is crucial in clinical settings. However, the limited availability of labeled data poses a challenge for traditional machine learning algorithms. To address this issue, we propose Turning Point (TP), a few-shot learning (FSL) approach that leverages high-level turning point mappings to build sophisticated representations across previously labeled data. Unlike existing FSL models, TP learns using quasi-configured topological spaces and efficiently combines the outputs of diverse TP learners. We evaluated TPFSL using three COVID-19 datasets and compared it with seven different benchmarks. Results show that TPFSL outperformed the top-performing benchmark models in both one-shot and five-shot tasks, with an average improvement of 4.50% and 4.43%, respectively. Additionally, TPFSL significantly outperformed the ProtoNet benchmark by 12.966% and 11.033% in one-shot and five-shot classification problems across all datasets. Ablation experiments were also conducted to analyze the impact of variables such as TP density, network topology, distance measure, and TP placement. Overall, TPFSL has the potential to improve the accuracy and speed of diagnoses for COVID-19 in clinical settings and can be a valuable tool for medical professionals.
Rocznik
Strony
77--95
Opis fizyczny
Bibliogr. 54 poz., rys.
Twórcy
autor
  • School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, Jilin, China
  • School of Economics and Management, Changchun University of Technology, Changchun 130012, Jilin, China
autor
  • School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, Jilin, China
autor
  • Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin, China
  • Department of Electrical Engineering, Imam Khomeini Marine Science University, Nowshahr, Iran
Bibliografia
  • [1] W.M. Shaban, A.H. Rabie, A.I. Saleh, M.A. Abo-Elsoud, A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier, Knowledge-Based Syst. 205 (2020) 106270.
  • [2] J. Li, C. Huang, Y. Yang, J. Liu, X. Lin, J. Pan, How nursing students’ risk perception affected their professional commitment during the COVID-19 pandemic: the mediating effects of negative emotions and moderating effects of psychological capital, Humanit. Soc. Sci. Commun. 10 (2023) 1–9.
  • [3] M.M. Islam, F. Karray, R. Alhajj, J. Zeng, A review on deep learning techniques for the diagnosis of novel coronavirus (COVID-19), Ieee Access. 9 (2021) 30551–30572.
  • [4] Q. Zhang, Y. Wang, R.-T. Bai, B.-R. Lian, Y. Zhang, L.-M. Cao, X-linked Charcot-Marie-Tooth disease after SARS-CoV-2 vaccination mimicked stroke-like episodes: A case report, World J. Clin. Cases. 11 (2023) 464.
  • [5] T. Sharma, R. Nair, S. Gomathi, Breast cancer image classification using transfer learning and convolutional neural network, Int. J. Mod. Res. 2 (2022) 8–16.
  • [6] I. Chatterjee, Artificial intelligence and patentability: review and discussions, Int. J. Mod. Res. 1 (2021) 15–21.
  • [7] W. Dang, L. Xiang, S. Liu, B. Yang, M. Liu, Z. Yin, L. Yin, W. Zheng, A Feature Matching Method based on the Convolutional Neural Network., J. Imaging Sci. Technol. 67 (2023).
  • [8] P.K. Vaishnav, S. Sharma, P. Sharma, Analytical review analysis for screening COVID-19 disease, Int. J. Mod. Res. 1 (2021) 22–29.
  • [9] W. Wang, F. Qi, D. Wipf, C. Cai, T. Yu, Y. Li, Z. Yu, W. Wu, Sparse Bayesian Learning for Endto-End EEG Decoding, IEEE Trans. Pattern Anal. Mach. Intell. (2023).
  • [10] B. Cheng, D. Zhu, S. Zhao, J. Chen, Situation-aware IoT service coordination using the event-driven SOA paradigm, IEEE Trans. Netw. Serv. Manag. 13 (2016) 349–361.
  • [11] X. Shen, S.-C. Du, Y.-N. Sun, P.Z.H. Sun, R. Law, E.Q. Wu, Advance Scheduling for Chronic care under online or Offline revisit uncertainty, IEEE Trans. Autom. Sci. Eng. (2023).
  • [12] S. Lu, J. Yang, B. Yang, Z. Yin, M. Liu, L. Yin, W. Zheng, Analysis and Design of Surgical Instrument Localization Algorithm., C. Model. Eng. Sci. 137 (2023).
  • [13] X. Yi, X. Guan, C. Chen, Y. Zhang, Z. Zhang, M. Li, P. Liu, A. Yu, X. Long, L. Liu, Adrenal incidentaloma: machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma, J. Cancer. 9 (2018) 3577.
  • [14] Z.A.A. Alyasseri, M.A. Al-Betar, I.A. Doush, M.A. Awadallah, A.K. Abasi, S.N. Makhadmeh, O.A. Alomari, K.H. Abdulkareem, A. Adam, R. Damasevicius, Review on COVID-19 diagnosis models based on machine learning and deep learning approaches, Expert Syst. 39 (2022) e12759.
  • [15] S. Lawrence, C.L. Giles, Overfitting and neural networks: conjugate gradient and backpropagation, in: Proc. IEEE-INNS-ENNS Int. Jt. Conf. Neural Networks. IJCNN 2000. Neural Comput. New Challenges Perspect. New Millenn., IEEE, 2000: pp. 114–119.
  • [16] N. Wang, J. Chen, W. Chen, Z. Shi, H. Yang, P. Liu, X. Wei, X. Dong, C. Wang, L. Mao, The effectiveness of case management for cancer patients: an umbrella review, BMC Health Serv. Res. 22 (2022) 1–20.
  • [17] S.K. Shukla, V.K. Gupta, K. Joshi, A. Gupta, M.K. Singh, Self-aware execution environment model (SAE2) for the performance improvement of multicore systems, Int. J. Mod. Res. 2 (2022) 17–27.
  • [18] T. Clarke, P. Ayres, J. Sweller, The impact of sequencing and prior knowledge on learning mathematics through spreadsheet applications, Educ. Technol. Res. Dev. (2005) 15–24.
  • [19] Y. Wang, Q. Yao, J.T. Kwok, L.M. Ni, Generalizing from a few examples: A survey on few-shot learning, ACM Comput. Surv. 53 (2020) 1–34.
  • [20] J. Vanschoren, Meta-learning, Autom. Mach. Learn. Methods, Syst. Challenges. (2019) 35–61.
  • [21] T. Hospedales, A. Antoniou, P. Micaelli, A. Storkey, Meta-learning in neural networks: A survey, IEEE Trans. Pattern Anal. Mach. Intell. 44 (2021) 5149–5169.
  • [22] J.R. Anderson, Is human cognition adaptive?, Behav. Brain Sci. 14 (1991) 471–485.
  • [23] J.L. McClelland, M.M. Botvinick, D.C. Noelle, D.C. Plaut, T.T. Rogers, M.S. Seidenberg, L.B. Smith, Letting structure emerge: connectionist and dynamical systems approaches to cognition, Trends Cogn. Sci. 14 (2010) 348–356.
  • [24] Y. Ma, G. Zhong, W. Liu, Y. Wang, P. Jiang, R. Zhang, ML-CGAN: conditional generative adversarial network with a meta-learner structure for high-quality image generation with few training data, Cognit. Comput. 13 (2021) 418–430.
  • [25] Y. Zhang, B. Lian, S. Yang, X. Huang, Y. Zhou, L. Cao, Metabotropic glutamate receptor 5-related autoimmune encephalitis with reversible splenial lesion syndrome following SARS-CoV-2 vaccination, Medicine (Baltimore). 102 (2023).
  • [26] Z. Gao, X. Pan, J. Shao, X. Jiang, Z. Su, K. Jin, J. Ye, Automatic interpretation and clinical evaluation for fundus fluorescein angiography images of diabetic retinopathy patients by deep learning, Br. J. Ophthalmol. (2022).
  • [27] Y. Liu, Y. Wu, X. Shen, L. Xie, COVID-19 multi-targeted drug repurposing using few-shot learning, Front. Bioinforma. 1 (2021) 693177.
  • [28] Y. Wang, C. Jiang, Y. Wu, T. Lv, H. Sun, Y. Liu, L. Li, X. Pan, Semantic-Powered Explainable Model-Free Few-Shot Learning Scheme of Diagnosing COVID-19 on Chest X-ray, IEEE J. Biomed. Heal. Informatics. 26 (2022) 5870–5882.
  • [29] W. Li, Diagnose COVID-19 Based on CT Images Using Transfer Learning, in: 2021 2nd Int. Conf. Artif. Intell. Comput. Eng., IEEE, 2021: pp. 740–744.
  • [30] X. Chen, L. Yao, T. Zhou, J. Dong, Y. Zhang, Momentum contrastive learning for few-shot COVID-19 diagnosis from chest CT images, Pattern Recognit. 113 (2021) 107826.
  • [31] Y. Ge, Y. Guo, Y.-C. Yang, M.A. Al-Garadi, A. Sarker, Few-shot learning for medical text: A systematic, (n.d.).
  • [32] Y. Jiang, H. Chen, H. Ko, D.K. Han, Few-shot learning for ct scan based covid-19 diagnosis, in: ICASSP 2021-2021 IEEE Int. Conf. Acoust. Speech Signal Process., IEEE, 2021: pp. 1045–1049.
  • [33] R. Abdrakhmanov, M. Altynbekov, A. Abu, A. Shomanov, D. Viderman, M.-H. Lee, Few-shot learning approach for COVID-19 detection from X-ray images, in: 2021 16th Int. Conf. Electron. Comput. Comput., IEEE, 2021: pp. 1–3.
  • [34] M. Abdel-Basset, V. Chang, H. Hawash, R.K. Chakrabortty, M. Ryan, FSS-2019-nCov: A deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection, Knowledge-Based Syst. 212 (2021) 106647.
  • [35] P. Singh, P. Mazumder, Dual class representation learning for few-shot image classification, Knowledge-Based Syst. 238 (2022) 107840.
  • [36] X. Wang, Y. Yuan, D. Guo, X. Huang, Y. Cui, M. Xia, Z. Wang, C. Bai, S. Chen, SSA-Net: Spatial self-attention network for COVID-19 pneumonia infection segmentation with semi-supervised few-shot learning, Med. Image Anal. 79 (2022) 102459.
  • [37] M. Shorfuzzaman, M.S. Hossain, MetaCOVID: A Siamese neural network framework with contrastive loss for n-shot diagnosis of COVID-19 patients, Pattern Recognit. 113 (2021) 107700.
  • [38] R. Abdrakhmanov, D. Viderman, K.-S. Wong, M. Lee, Few-Shot Learning based on Residual Neural Networks for X-ray Image Classification, in: 2022 IEEE Int. Conf. Syst. Man, Cybern., IEEE, 2022: pp. 1817–1821.
  • [39] X. Yang, X. He, J. Zhao, Y. Zhang, S. Zhang, P. Xie, COVID-CT-dataset: a CT scan dataset about COVID-19, (2020).
  • [40] C. Interiano, S. Muze, B. Turner, M. Gonzalez, B. Rogers, R. Jerris, E. Weinzierl, M. Elkhalifa, V. Leung-Pineda, Dataset for longitudinal evaluation of the Abbott ARCHITECT SARS-CoV-2 IgM and IgG assays in a pediatric population divided by age, Data Br. 36 (2021) 107110.
  • [41] E. Neri, V. Miele, F. Coppola, R. Grassi, Use of CT and artificial intelligence in suspected or COVID-19 positive patients: statement of the Italian Society of Medical and Interventional Radiology, Radiol. Med. 125 (2020) 505–508.
  • [42] Y. Zhuang, N. Jiang, Y. Xu, Progressive distributed and parallel similarity retrieval of large CT image sequences in mobile telemedicine networks, Wirel. Commun. Mob. Comput. 2022 (2022) 1–13.
  • [43] S. Lu, B. Yang, Y. Xiao, S. Liu, M. Liu, L. Yin, W. Zheng, Iterative reconstruction of low-dose CT based on differential sparse, Biomed. Signal Process. Control. 79 (2023) 104204.
  • [44] F. Pahde, M. Puscas, T. Klein, M. Nabi, Multi-modal prototypical networks for few-shot learning, in: Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., 2021: pp. 2644–2653.
  • [45] Y. Gong, Y. Yue, W. Ji, G. Zhou, Cross-domain few-shot learning based on pseudo-Siamese neural network, Sci. Rep. 13 (2023) 1427.
  • [46] X. Xu, Z. Wang, Z. Chi, H. Yang, W. Du, Complementary features based prototype self-updating for few-shot learning, Expert Syst. Appl. 214 (2023) 119067.
  • [47] Z. Wang, P. Ma, Z. Chi, D. Li, H. Yang, W. Du, Multi-attention mutual information distributed framework for few-shot learning, Expert Syst. Appl. 202 (2022) 117062.
  • [48] B. Oreshkin, P. Rodríguez López, A. Lacoste, Tadam: Task dependent adaptive metric for improved few-shot learning, Adv. Neural Inf. Process. Syst. 31 (2018).
  • [49] P. Tian, W. Li, Y. Gao, Consistent meta-regularization for better meta-knowledge in few-shot learning, IEEE Trans. Neural Networks Learn. Syst. 33 (2021) 7277–7288.
  • [50] J. Snell, K. Swersky, R. Zemel, Prototypical networks for few-shot learning, Adv. Neural Inf. Process. Syst. 30 (2017).
  • [51] X. Luo, H. Wu, J. Zhang, L. Gao, J. Xu, J. Song, A Closer Look at Few-shot Classification Again, ArXiv Prepr. ArXiv2301.12246. (2023).
  • [52] X. Li, M. Khishe, L. Qian, Evolving deep gated recurrent unit using improved marine predator algorithm for profit prediction based on financial accounting information system, Complex Intell. Syst. (2023) 1–17.
  • [53] L. Qian, J. Bai, Y. Huang, D.Q. Zeebaree, A. Saffari, D.A. Zebari, Breast cancer diagnosis using evolving deep convolutional neural network based on hybrid extreme learning machine technique and improved chimp optimization algorithm, Biomed. Signal Process. Control. 87 (2024) 105492
  • [54] Y. Zhang, Y. Guo, Y. Jin, Y. Luo, Z. He, H. Lee, Unsupervised discovery of object landmarks as structural representations, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018: pp. 2694–2703.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-486e18ff-9bd9-4749-8863-535bd9fb3708
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.