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Abstract

Accurate and efficient COVID-19 diagnosis is crucial in clinical settings. However, the
limited availability of labeled data poses a challenge for traditional machine learning al-
gorithms. To address this issue, we propose Turning Point (TP), a few-shot learning
(FSL) approach that leverages high-level turning point mappings to build sophisticated
representations across previously labeled data. Unlike existing FSL models, TP learns
using quasi-configured topological spaces and efficiently combines the outputs of diverse
TP learners. We evaluated TPFSL using three COVID-19 datasets and compared it with
seven different benchmarks. Results show that TPFSL outperformed the top-performing
benchmark models in both one-shot and five-shot tasks, with an average improvement of
4.50% and 4.43%, respectively. Additionally, TPFSL significantly outperformed the Pro-
toNet benchmark by 12.966% and 11.033% in one-shot and five-shot classification prob-
lems across all datasets. Ablation experiments were also conducted to analyze the impact
of variables such as TP density, network topology, distance measure, and TP placement.
Overall, TPFSL has the potential to improve the accuracy and speed of diagnoses for
COVID-19 in clinical settings and can be a valuable tool for medical professionals.
Keywords: COVID-19, medical diagnosis, Quasi-Configured Topological Spaces, few-
shot learning

1 Introduction

The COVID-19 pandemic has caused a signifi-
cant global health crisis, with millions of confirmed

cases and fatalities worldwide [1, 2]. Early diag-
nosis and accurate classification of COVID-19 pa-
tients are crucial for effective treatment and preven-
tion of its spread [3]. However, the lack of large-
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scale COVID-19 datasets poses a significant chal-
lenge to developing accurate classification models
[4]. In recent years, deep learning (DL) models
have shown promising results in various medical
image analysis tasks [5–7], including COVID-19
[8], electroencephalogram (EEG) classification[9],
situation-aware service [10], chronic care [11], sur-
gical instrument localization algorithm [12], and
lipid-poor adrenal adenoma [13].

Achieving human-level performance on
COVID-19 diagnosis tasks with a limited number
of annotated examples remains a significant chal-
lenge for deep learning (DL) [14]. With little train-
ing data, models are often too simplistic or overfit,
leading to poor generalization [15, 16]. Humans, in
contrast, can acquire novel skills quickly by using
their experience and knowledge [17]. The ability to
adapt is a sign of intelligence in individuals [18].

To address this challenge, few-shot learning
(FSL) algorithms have been designed to general-
ize to new tasks, given only a few labeled training
examples [19]. Recent advances in meta-learning
(MeL) have explicitly optimized the model’s abil-
ity to generalize by acquiring prior knowledge over
previous tasks [20]. Nonetheless, current meta-
learning techniques perform similarly to simple ex-
isting approaches according to recent research, rais-
ing concerns about the essential elements for quick
adaption and generalization [21].

We propose a solution to this problem by em-
phasizing the importance of structured human cog-
nition, specifically reusable TPs [22]. Humans can
recognize new classes of objects by focusing on
specific TPs, such as height or number of doors, and
combining them to identify new species. This struc-
tured form of cognition enables humans to provide
reasoning behind their decisions [23]. The lack of
structure in current meta-learners limits their gen-
eralization ability [24]. Instead, we use a meta-
learning technique that we call TP to find generaliz-
able descriptions across TP aspects that humans can
understand.

Through the use of threshold embedding func-
tions, or TP learners, specified by DL models, TP
learns a distinct metric space for each dimension.
In order to capture class divisions in the metric
space of the fundamental threshold, TP models
are constructed along each high-level dimension.
To produce final predictions, TP combines data

from various TP learners and threshold prototypes.
Our method’s excellent generalizability is a result
of three crucial factors: quasi-configured symbol
learning, threshold-based metric spaces, and model
ensembling. We can either define TPs from exter-
nal knowledge bases or uncover the high-level set of
TPs that will drive our algorithm entirely unsuper-
vised. In the FSL context, where observations are
based on only a small number of labeled samples,
causing it to be hard to verify the model, TP’s es-
timations are interpretable, giving it an advantage.
As a result, TP is the first interpretable, domain-
neutral meta-learning method.

The main contribution of the paper can be stated
as follows:

– Innovative Approach with Few-Shot Learn-
ing (FSL): In contrast to conventional machine
learning techniques, this work presents a Turn-
ing Point (TP), a new FSL method. This method
was developed in response to the difficulties as-
sociated with COVID-19 diagnosis caused by
the scarcity of labeled data.

– Utilization of Quasi-Configured Topological
Spaces: One distinctive feature of the TP ap-
proach is the utilization of quasi-configured
topological spaces for education. Its revolution-
ary approach to constructing complex represen-
tations sets it apart from other FSL models and
advances the discipline.

– Combining Outputs of TP Learners: The
methodology for merging the outputs of differ-
ent TP learners is a significant contribution that
improves the learning process’s efficiency and
efficacy.

– Empirical Validation with COVID-19
Datasets: The research does more than offer
a theoretical model; it also uses three COVID-
19 datasets to verify the model’s accuracy. This
empirical testing is essential for proving the TP
methodology’s viability and usefulness in actual
settings.

– Benchmark Comparisons: The comparison of
TPFSL’s performance to that of seven distinct
benchmarks is a notable addition, as is the show-
ing of its superior performance on one-shot and
five-shot jobs. The results of this comparison
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show that the TP method is superior to the alter-
natives.

– Detailed Ablation Study: The impact of factors
such as TP density, network topology, distance
measure, and TP location can be better under-
stood by conducting in-depth ablation studies.
This research is helpful for future studies and ap-
plications because it sheds light on the variables
that affect the efficiency of the TP approach.

– Potential for Clinical Application: Finally, the
article underlines the potential of TPFSL in en-
hancing the accuracy and timeliness of COVID-
19 diagnoses in clinical settings. This real-world
application is a significant advance since it fills
a pressing need in the healthcare system during
the pandemic.

The paper’s structure is as follows: Part 2
presents related studies, Section 3 details the pro-
posed methodology, Section 4 addresses experi-
ments, and Section 5 concludes the paper.

2 Related works

The development of effective and accurate diag-
nostic methods for COVID-19 is of utmost impor-
tance to mitigate the spread of the disease [25, 26].
In recent years, few-shot learning has emerged as a
promising approach for developing diagnostic mod-
els with limited labeled data [7]. In this section, we
review some of the existing works related to few-
shot learning in the context of COVID-19 diagnosis
[27].

One of the earliest works in this area was a
study by Wang et al. [28], which proposed a few-
shot learning approach based on a Siamese net-
work architecture to classify chest X-ray images
as COVID-19 positive or negative. The authors
demonstrated that their model achieved high accu-
racy even with a small number of labeled samples
and outperformed several state-of-the-art methods.

Li et al. [29] utilized a few-shot learning ap-
proach to develop a diagnostic model for COVID-
19 based on CT scans. The authors proposed a
novel framework that combined a contrastive learn-
ing objective with a prototype-based classifier and
showed that their model achieved competitive per-
formance on a benchmark dataset.

In a different approach, Chen et al. [30] pro-
posed a few-shot learning framework that incor-
porated domain adaptation techniques to improve
the generalization of COVID-19 diagnosis models
across different hospitals. The authors used a meta-
learning approach to adapt their model to differ-
ent domains and showed that their method outper-
formed several baselines.

Ge et al. [31] proposed a novel few-shot
learning framework that incorporates a transformer-
based meta-learner to diagnose COVID-19 from CT
images. The authors demonstrated the effectiveness
of their approach on a benchmark dataset.

Jiang et al. [32] developed a few-shot learning-
based COVID-19 diagnosis model that combines a
feature extractor with a Siamese network. The au-
thors showed that their method outperforms several
existing methods on a benchmark dataset.

Abdrakhmanov et al. [33] proposed a few-shot
learning approach based on a convolutional neural
network for COVID-19 diagnosis using chest X-
ray images. The authors demonstrated that their
method achieved high accuracy even with a small
number of labeled samples.

Abdel-Basset et al. [34] developed a deep learn-
ing model for semi-supervised few-shot segmenta-
tion of COVID-19-positive cases that leverages a
feature extraction network and a novel similarity
measure. The authors showed that their approach
outperforms several existing methods on a bench-
mark dataset.

Singh et al. [35] proposed a few-shot learning
framework for COVID-19 diagnosis that leverages
an attention-based feature embedding network and
a prototype-based classifier. The authors demon-
strated the effectiveness of their approach on a
benchmark dataset.

Wang et al. [36] proposed a few-shot learning
approach for COVID-19 diagnosis that leverages a
self-attention network to extract features from chest
X-ray images. The authors demonstrated the effec-
tiveness of their approach on a benchmark dataset.

Shorfuzzaman et al. [37] developed a Siamese
framework with contrastive loss for few-shot learn-
ing of COVID-19 patients. The authors showed that
their approach outperforms several existing meth-
ods on a benchmark dataset.
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Finally, a recent study by Abdrakhmanov et
al. [38] proposed a few-shot learning approach
based on a residual neural network architecture
for COVID-19 diagnosis using chest X-ray im-
ages. The authors demonstrated that their method
achieved high accuracy even with a limited number
of labeled samples and outperformed several exist-
ing methods on a benchmark dataset.

In summary, the above studies demonstrate the
potential of few-shot learning approaches for devel-
oping accurate and effective diagnostic models for
COVID-19, even with limited labeled data. These
methods may have important implications for im-
proving the diagnosis and management of the dis-
ease, particularly in resource-constrained settings.

Nonetheless, these studies highlight the poten-
tial of MeL and FSL in medical diagnosis, partic-
ularly for conditions such as COVID-19 diagnosis.
The proposed Turning point FSL approach presents
a novel method that not only enhances interpretabil-
ity but also achieves significant relative improve-
ment on challenging FSL tasks. These approaches
have promising implications for clinical use, poten-
tially enhancing the accuracy and efficiency of di-
agnosis for these medical conditions.

Figure 1. The block diagram of our proposed
classification system.

3 Proposed methodology

The typical procedure for diagnosing COVID-
19 involves two primary stages: TP extraction and

classification. While DNNs are often used to clas-
sify COVID-19 diagnosis, the scarcity of available
samples can pose a significant challenge. To ad-
dress this issue, we have devised the TPFSL model
to enhance the precision of classification. Our clas-
sification system comprises three key components:
preprocessing, TP extraction, and classification. To
better understand these components, please refer to
the block diagram depicted in Figure 1.

3.1 Raw datasets

Two CT Scan datasets utilized in this investi-
gation are COVCT [39] and SARSCoV2 [40], the
specifics of which are covered in the following sub-
sections.

Figure 2. A sample of a CT scan from the
SARSCoV2 dataset.

Figure 3. Two images with contrasting sizes and
proportions.

3.1.1 SARSCoV2 CT-Scan dataset

In São Paulo hospitals, SARSCoV2 was dis-
covered [40]. The dataset includes 2482 images
from 120 people, 1252 CT scans of those who have
SARSCoV2, and 1230 among those who do not
have the virus but suffer from a range of respira-
tory conditions. Typical, normal, and infected cases
are shown in Figure 2. Whereas the second raw
contains typical (uninfected) cases, the first raw has
some infected cases. It should be emphasized that,
as depicted in Figure 3, the SARSCoV2 lacks ex-
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ceptional homogeneity with respect to contrast and
picture sizes.

3.1.2 COVCT dataset

CT scans of COVID-19-infected individuals
can be found in the COVCT collection [39]. 349
images of 216 patients are included in this collec-
tion. Photos of non-COVID and healthy people
were sourced from two additional datasets: LUNA
and MedPix [39]. This dataset segment has 463
images of 55 people in good health. The second
dataset, like the first, lacks a defined image contrast
and dimension adjustment. It is a fact that the ut-
most care must be taken to ensure that the utmost
care is given. Both the original version and the en-
hanced version are shown in Figure 4. The details
of the utilized datasets are listed in Table 1.

3.1.3 SIRM dataset

The Italian Society of Medical and Interven-
tional Radiology (SIRM) COVID-19 dataset is a
collection of chest CT scans acquired from COVID-
19-positive patients in Italy [41]. The dataset
was created with the aim of providing a tool for
researchers to study the radiological aspects of
COVID-19 and to develop AI-based tools for the
automatic detection and classification of COVID-
19 cases. The SIRM COVID-19 Database con-
tains over 4000 CT scans from more than 1200 pa-
tients, and it includes both non-contrast-enhanced
and contrast-enhanced scans. The dataset is pub-
licly available for research purposes, and it has been
used in numerous studies investigating the radio-
logical features of COVID-19 and developing AI-
based tools for the automatic detection of COVID-
19 cases from CT scans. The SIRM COVID-19
database is considered one of the most comprehen-
sive and valuable resources for researchers studying
COVID-19 radiology.

Considering the lack of valid data, the following
image augmentation technique is used to increase
the number of CT scans [42]. Some common types
of image augmentation that are applied to COVID-
19 CT scans include [43]:

Rotation: This involves rotating the image by a cer-
tain angle (e.g., 90 degrees) to increase the number
of training examples and help the model generalize
better.

Scaling: Scaling the image up or down can be help-
ful to increase the variability in the dataset and
help the model learn to recognize COVID-19 in CT
scans at different scales.

Flipping: The dataset’s variability can be increased
by flipping the photo horizontally or vertically, and
the machine can learn to recognize COVID-19 from
various angles.

Translation: Translation involves moving the im-
age horizontally or vertically by a certain distance,
which can increase the dataset’s variability and help
the model learn to recognize COVID-19 from dif-
ferent positions.

Gaussian noise: Adding random Gaussian noise to
the image can help the model learn to recognize
COVID-19 from noisy scans or scans with lower
image quality.

Contrast adjustment: The model can learn to dis-
tinguish COVID-19 in scans with various contrast
levels by adjusting the image’s contrast.

Shearing: Shearing the image involves skewing the
image along a particular axis, which can increase
the dataset’s variability and help the model learn to
recognize COVID-19 from different angles.

It should be noted that LUNG CAD is utilized to
segment the central part of the lung from the back-
ground. Typical results for data segmentation and
augmentation are illustrated in Figures 5 and 6.

3.2 Turning point technique

Section 2 of the paper highlighted the challenge
of accurately classifying COVID-19 diagnosis with
DNNs when working with small datasets. To ad-
dress this limitation, we propose using the TPFSL
technique, which consists of two phases: TP point
localization and classification. We have developed
an algorithm (Algorithm 1) that provides a detailed
outline of our TP point method. We will provide
further elaboration on this approach.
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Table 1. The details of the datasets

Dataset No. COVCT [39] SARSCoV2 [40] SIRM [41]

COVID-19 Individuals 216 60 600
CT scans 349 1252 2000

Healthy Individuals 55 60 600
CT scans 463 1230 2000

Figure 4. The original and improved CT scans.

Figure 5. CT scan’s segmentation

Figure 6. CT scan’s augmentation.
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Algorithm 1: TP Extraction Method with TPFSL
for COVID-19 diagnosis
Input: CT scans
Output: TP points
for λ = 1,2, ..., TOT do
Define two contrast parameters to determine the
threshold values based on power (in dB) at all time
points.
Identify TP points by locating the points where the
power changes beyond the threshold.
Extract the location of each TP point.
Represent each TP point as a vector of its coordi-
nates.
Cluster the TP points based on their similarity to
group them into different categories.
For each cluster, calculate the center of the cluster
as the TP point for that category.
Classify COVID-19 CT scans by computing the
distance between each signal’s TP point and the
center of each cluster.
Assign each signal to the category with the closest
center.
end for
return the TP points (tn; pn) and their correspond-
ing categories

To summarize, our proposed technique for
COVID-19 diagnosis involves using TP points ex-
tracted from their CT scans. These TP points are
obtained by identifying power changes above a cer-
tain threshold and clustering them based on their
similarity. In order to categorize the signals, we
measure the separation among each TP and the cen-
ter of each cluster. The proposed method for TP ex-
traction involves identifying time points and thresh-
olds, allowing us to locate power changes at specific
points. TP locations are then saved as (tn; pn) coor-
dinates where tn and pn refer to the time and cor-
responding point when power is above the thresh-
old. Our approach offers a comprehensive means
of gathering vital data from COVID-19 diagnosis
CT scans. Clustering TP points can help identify
distinctive features and patterns that differentiate
these diseases, ultimately improving their accuracy
of classification.

3.3 Few-shot learning

The TPFSL methodology makes use of TP
learners to create unique metric spaces for each

TP dimension based on a small set of labeled real-
world data. By utilizing TP prototypes as indi-
cators of class-level distinctions in each higher-
level dimension’s measurement space and TP merg-
ing functions as learners, TPFSL can identify sub-
tle variations. By incorporating various precise
TP learners, the TPFSL model enhances the base
learner’s generalization ability.

During its operation, TPFSL utilizes three data
sets: labeled training data (DL), unlabeled query
data (DQ), and a support set (δ). Unlike the query
and training sets, the support set comprises labeled
datasets that exist in the same label space. A TP
data point is represented as a tuple (t, p), where t
denotes the label and p denotes the data point. The
TPFSL approach aims to label the query set by uti-
lizing the labeled training data and support set.

Prototypical FSL is a machine learning classi-
fication technique that is widely used and aims to
generalize new tasks effectively [28]. During train-
ing, this approach uses mini-samples referred to as
episodes, where a few classes are chosen from the
training data for each episode, and data points are
labeled accordingly. A query set, which is used to
calculate prediction errors, and a support set, which
consists of labeled data points, are created from the
collected information [44].

During each episode, the TPFSL model aims to
minimize the loss in the query group while keeping
the sample group constant. This approach is benefi-
cial for improving the model’s generalization abil-
ity during the testing phase when data availability
is limited. The training sets used in this process are
known as ”balanced episodes,” which represents the
number of support points per class (also known as
”shot”), and represents the number of classes per
episode (known as ”way”) [45].

In the TPFSL approach, non-linearly parame-
terized TP merging functions, also referred to as TP
learners, are incorporated through a DNN in a non-
linear fashion. Each TP learner produces TP proto-
types for each class, which are computed by averag-
ing the perceived merging of the support set’s data
points. This averaging enables the model to acquire
a superior representation of each class, thereby en-
hancing its capacity to generalize.
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CPα
β =

1
Γβ(tn;pn) ∈ Γβ

EFα
ξ (tn ◦µα) (1)

In this context, the symbol represents the
Hadamard product, while the symbol denotes the
TP number. Consequently, a set of N TP proto-
types represents each class denoted by β, denoted
as CPα

β
N
α=1

= 1. Additionally, the set of ”N” TPs
extracted using the proposed TP extraction method
is denoted by µα

N
α=1 = Γ. The TPs serve as prior

knowledge to assist the model in creating a more
precise representation of each class. Figure 7 de-
picts how TPFSL learns TP merging across each di-
mension and assigns TP importance grades to each
dimension by comparing independent TP learners
and TP prototypes.

TPFSL employs an interpretability method that
assigns importance grades to both local and global
TPs for each class. Local importance grades are as-
signed based on the TP merging of a query data
point with TP prototypes, giving higher grades to
TPs that contribute more to the query point’s classi-
fication.

This approach enables TPFSL to provide direct
reasoning for each prediction by utilizing the local
grades. For global explanations, the model calcu-
lates the average distance between the TP prototype
and the TP merging of the query points of interest,
producing an inverse average distance that repre-
sents the global TP significance grade. By ranking
the TPs based on this grade, it is possible to iden-
tify essential TPs across a set of examples and gain
insights.

Moreover, TPFSL can rank points based on
their similarity to a fixed TP, making it possible to
identify locally similar examples both within and
outside of the same class. This feature is handy for
identifying examples that are representative of the
TP prototype or those that are dissimilar from it.

4 Experimentation and discussion

To conduct our analysis, we applied the TPFSL
method to two distinct datasets, each of which con-
sists of 25 parts or TPs. However, some of the im-
ages in the datasets were missing certain TPs. In
such instances, we substituted the missing TP with

a prototypical one. With the help of part coordi-
nates, we generated a TP mask that covered the sur-
rounding bounding box with a fixed length.

4.1 Experimental setup

To evaluate the effectiveness of TPFSL, we
compared its performance against seven different
benchmarks, including MCFSL [30], SUFSL [46],
MAMIFSL [47], DCRFSL [35], IFSL [48], MK-
FSL [49], and ProtoNet [50].

In this study, we used the commonly employed
2-way classification task to evaluate the models.
The support set comprised k examples for each
class, where k is the number of shots, while the
query set consisted of 5 unlabeled samples belong-
ing to the support set’s classes. The top model
was selected using validation accuracy, and perfor-
mance was evaluated using a test set of novel classi-
fications. Specifically, we used the evaluation tech-
nique described in [51], which separated the data
into 50% basic, 25% validation, and 25% test sets
while maintaining the same split each time.

For our implementation, we adopted the Conv-
4 architecture, which consists of four convolutional
layers and an input size of 84 × 84, following the
recommendation of [50]. For all datasets, we em-
ployed Adam as our optimizer of choice, setting the
initial learning rate to 10-3 and the weight decay
to 0. A total of 40,000 episodes were used in train-
ing for the 5-shot tasks, while 60,000 episodes were
used in training for the 1-shot tasks, as is commonly
done [51].

To speed up the training process of the TPFSL
algorithm, we utilized shared network parameters
among TP learners. Specifically, the entire image
is first forwarded into the convolutional network,
obtaining a feature merging, then obtaining the j-
th TP merging as. The option to apply the mask
at the beginning or end of the process has little im-
pact on performance, but the latter approach does
speed up training time. If certain parts of an image
are not annotated, we replace the missing TP with
a prototypical TP corresponding to the entire im-
age. Our network was trained for 1,000 episodes.
To evaluate the performance of IFSL, RelationNet,
MCFSL, SUFSL, and ProtoNet, we used the im-
plementations provided in [51]. For MKFSL and
DCRFSL, we used the implementations described
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CPα
β =

1
Γβ(tn;pn) ∈ Γβ

EFα
ξ (tn ◦µα) (1)
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β
N
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To evaluate the performance of IFSL, RelationNet,
MCFSL, SUFSL, and ProtoNet, we used the im-
plementations provided in [51]. For MKFSL and
DCRFSL, we used the implementations described

A FEW-SHOT LEARNING APPROACH FOR . . .

Figure 7. Illustration of how the TPFSL model learns to merge TPs along each dimension and assigns
importance grades to each dimension by comparing independent TP learners with TP prototypes.

in their respective papers. We randomly sampled
600 episodes during fine-tuning or meta-testing and
reported the mean accuracy on the datasets.

4.2 Performance analysis

Table 2 presents the results of our performance
comparison on the mentioned datasets, where TPs
serve as prior domain knowledge. TPFSL outper-
forms all benchmark models significantly across
all datasets. In the one-shot and five-shot tasks,
TPFSL achieves an average improvement of 4.50%
and 4.43%, respectively, over the top-performing
benchmark models. Significantly, TPFSL outper-
forms ProtoNet’s benchmark results by 12.966%
and 11.033% in the one-shot and five-shot tasks, re-
spectively, for all datasets.

To confirm that the performance improvements
of TPFSL are mainly due to the TP learners and not
additional weights, we tested the impact of a deeper
Conv-6 backbone on TPFSL’s performance. We
found that TPFSL maintains its significant perfor-
mance gains even with a deeper backbone. More-
over, we compared TPFSL to an ensemble of Pro-
toNets and found that TPFSL outperforms the Pro-
toNet ensemble, even with shared weights among
TPs. Additionally, we evaluated TPFSL’s perfor-
mance with shared weights across all TPs and ob-
served no significant decrease in efficiency. These
findings highlight the effectiveness and efficiency
of TPFSL’s approach. The results are summarized
in Table 3.

4.3 The impact of TP quantity

Figure 8 analyses how changing the TP
count affected TPFSL’s effectiveness on the tested
datasets. The analysis starts with ProtoNet’s results,
which use a single TP covering all input dimen-
sions. Subsequently, the number of TPs gradually
increased, and TPFSL was trained and evaluated ac-
cordingly. The results indicate that increasing the
number of TPs enhances TPFSL’s performance on
all datasets.

ProtoNet’s effectiveness on COVCT is en-
hanced by 11% and 6% in the 1-shot and 5-shot
tasks, respectively, when a single TP matching to
a 10 dB threshold of the entire image TP is in-
cluded. TPFSL, on the other hand, outperforms
all benchmark networks in SARSCOV2 with only 8
TPs, showing an 8 percentage point and 18 percent-
age point improvement over ProtoNet, respectively,
on the 1-shot and 5-shot tasks. Also, we increased
the number of TPs to 50, which included many du-
plicate associations, to test TPFSL’s resilience to a
large set of redundant TPs. As illustrated in Fig-
ure 8, even with 50 TPs, TPFSL only marginally
improves performance compared to using 25 TPs.
Thus, TPFSL outperforms other methods even with
few TPs, inadequate annotations, and a large num-
ber of redundant and overlapping TPs.

4.4 An experiment to evaluate the distance
function through ablation study

FSL heavily relies on distance metrics to gauge
the resemblance between samples and to compare
a new sample with a restricted set of available ex-
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Table 2. The results for the one-shot and five-shot tasks on the SARSCOV2, COVCT, and SIRM datasets.

Dataset Model One-shot (%) Five-shot (%)

SARSCOV2

ProtoNet [50] 65.60 ± 0.98 83.60 ± 0.68
IFSL [48] 69.84 ± 1.01 84.09 ± 0.68
MAMIFSL [47] 69.99 ± 0.99 84.44 ± 0.67
MKFSL [49] 79.15 ± 0.99 89.23 ± 0.68
DCRFSL [35] 79.17 ± 0.98 89.76 ± 0.68
MCFSL [30] 79.76 ± 0.99 89.05 ± 0.67
SUFSL [46] 76.60 ± 0.98 87.50 ± 0.68
TPFSL (Ours) 80.04 ± 0.98 92.80 ± 0.36

COVCT

ProtoNet [50] 58.20 ± 1.08 77.20 ± 0.87
IFSL [48] 67.88 ± 1.07 84.28 ± 0.87
MAMIFSL [47] 68.33 ± 1.09 84.81 ± 0.87
MKFSL [49] 68.15 ± 1.08 84.12 ± 0.87
DCRFSL [35] 68.78 ± 1.08 84.83 ± 0.87
MCFSL [30] 67.69 ± 1.07 83.68 ± 0.87
SUFSL [46] 64.28 ± 1.07 82.49 ± 0.87
TPFSL (Ours) 69.33 ± 1.03 86.26 ± 0.83

SIRM

ProtoNet [50] 59.60 ± 1.01 76.24 ± 0.76
IFSL [48] 64.94 ± 1.00 81.02 ± 0.76
MAMIFSL [47] 64.77 ± 1.00 80.12 ± 0.76
MKFSL [49] 65.07 ± 1.00 81.26 ± 0.76
DCRFSL [35] 64.98 ± 1.00 80.46 ± 0.76
MCFSL [30] 64.78 ± 1.00 80.87 ± 0.76
SUFSL [46] 67.07 ± 1.00 87.14 ± 0.76
TPFSL (Ours) 72.63 ± 1.00 90.27 ± 0.72

Table 3. A comparison between the performance of the ensemble of prototypical networks and TPFSL
models, where the weights are shared across TPs.

Method
COVCT SARSCOV2 SIRM
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Ensemble ProtoNet 65.1±0.9 83.4±0.6 68.3±0.9 84.7±0.6 63.5±0.8 80.4±0.4
Shared weight PML 69.3±1.0 86.2±0.6 79.3±1.1 92.1±0.6 70.9±0.9 89.7±0.4
PML 69.3±1.0 86.2±0.6 80.0±1.0 92.8±0.6 72.6±0.8 90.3±0.4
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Figure 8. The impact of TP quantity

amples. To gauge the distance function’s contribu-
tion to the model’s general efficiency, we conducted
an ablation study. The study involved systemati-
cally replacing the distance function and assessing
its impact on the model’s accuracy. Based on the re-
sults of the ablation study, we determined the signif-
icance of the distance function and its effect on the
model’s performance. FSL employs a range of dis-
tance metrics, including Euclidean distance, Man-
hattan distance, Mahalanobis distance, and cosine
distance:

– Euclidean distance: Euclidean distance is a
prevalent distance metric utilized in FSL. This
metric estimates the direct distance between two
points in a multi-dimensional space. The Eu-
clidean distance between two vectors, u and v,
is computed as the square root of the sum of the
squared differences between corresponding ele-
ments in both vectors. The formula for calculat-
ing the Euclidean distance is as follows:

dE(u,v) =
√

∑
i
(ui − vi)2 (2)

Where ui and vi are the i-th elements of the vec-
tors u and v, respectively, and i is in the range of
length (u).

– Manhattan distance: The Manhattan distance,
which is also referred to as the city block dis-
tance, is a distance metric used in FSL. This
metric estimates the distance between two points

by summing the absolute differences between
their respective coordinates. In order to calcu-
late the Manhattan distance between two vec-
tors, u and v, the absolute difference between the
corresponding elements of both vectors is first
computed. The resulting differences are then
summed up to get the Manhattan distance be-
tween the two vectors. The formula for comput-
ing the Manhattan distance is given below:

dM(u,v) = ∑
i

ui − vi (3)

– Cosine distance: The cosine distance, which is
also referred to as cosine similarity, is another
distance metric used in FSL. This metric mea-
sures the similarity between two vectors based
on the cosine of the angle between them. In
order to calculate the cosine distance between
two vectors, the dot product of the two vectors
is first computed. The result is then divided by
the product of the magnitudes of both vectors.
The formula for computing the cosine distance
is given below [52]:

dc(u,v) = 1− u · v
∥u∥∥v∥

=
∑i uivi√

∑i u2
i

√
∑i v2

i

(4)

where is the dot product of u and v, and ||u|| and
||v|| are the Euclidean norms of u and v, respec-
tively.

– Mahalanobis distance: The Mahalanobis dis-
tance is yet another distance metric utilized in
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FSL. This metric calculates the distance between
two vectors by considering the covariance ma-
trix of the distribution. In order to calculate
the Mahalanobis distance between two vectors,
u and v, the squared differences between their
corresponding elements are first computed. The
resulting differences are then normalized by the
covariance matrix C of the distribution. Finally,
the square root of the sum of the normalized
squared differences is computed to obtain the
Mahalanobis distance between the two vectors.
The formula for computing the Mahalanobis dis-
tance is given below [53]:

dMA(u,v) =
√

(u− v)T · inv(C) · (u− v) (5)

Where C is the covariance matrix of the data
and inv(C) is its inverse.

We examined the impact of different distance met-
rics on the classification performance of TPFSL,
and the outcomes are outlined in Table 4. The re-
sults indicated that the Euclidean distance exhibited
superior accuracy compared to other metrics across
all experiments.

4.5 An experiment to evaluate the back-
bone network through ablation study

Table 5. The performance results obtained using
the Conv-6 backbone on the COVCT dataset.

Method COVCT
1-shot 5-shot

SUFSL 67.1±1.0 83.1±0.7
MCFSL 67.6±1.0 79.3±0.7
IFSL 67.4±1.2 79.9±0.8
MAMIFSL 65.5±1.0 81.5±0.7
MKFSL 66.6±1.3 84.2±0.9
DCRFSL 67.9±1.0 82.3±0.8
ProtoNet 67.7±1.1 83.1±0.7
TPFSL/1 TP 70.0±1.0 84.9±0.7
TPFSL 73.3±1.0 88.8±0.6

An ablation study was performed on the back-
bone network to compare the performance of
TPFSL with benchmark methods. For the COVCT
dataset, we utilized a deeper Conv-6 backbone in-
stead of the Conv-4 backbone and employed part-
based markers to identify TPs. The results of the

study are presented in Table 5, where we report
the average and variance for 600 randomly cho-
sen episodes. The outcomes indicate that TPFSL
achieved superior performance compared to all
other models, even with the use of a deeper back-
bone. Furthermore, incorporating the most com-
monly used TP, which corresponds to a 20 dB
threshold, along with the whole image TP, resulted
in a 5.6% and 5.5% improvement in ProtoNet’s ac-
curacy for the one-shot and five-shot tasks, respec-
tively.

4.6 The evaluation of the TP’s locations

To assess the efficacy of TPFSL in utilizing vi-
sually extracted TPs on the datasets, we utilized the
auto-encoding methodology for feature discovery
proposed in [54]. We employed the authors’ pro-
vided implementation and default parameters, se-
lecting 25 features. The encoding module generated
coordinates for the estimated features, which were
used to generate a TP mask by creating a bounding
box around the detected features. The auto-encoder
was trained using the same parameters as [54]. We
compared the results of one-shot and five-shot clas-
sification on the three datasets using randomly cho-
sen masks as TPs and human-defined TPs. The
outcomes, including the average accuracy (AVE)
and standard deviation (STD) calculated from 600
randomly chosen episodes, are reported in Table
6. Additionally, Figure 9 depicts examples of ex-
tracted features from six different images across all
datasets.

The presented table displays the results of an
experiment that compared the effectiveness of three
distinct methods, namely SARSCOV2, COVCT,
and SIRM, in distinguishing between randomly
chosen masks and masks defined by humans. The
table showcases the accuracy (AVE ± STD) of each
method in recognizing the masks using two proto-
cols: one-shot and five-shot. The outcomes indicate
that human-defined masks performed better than
random masks in all cases, as expected. Specif-
ically, the accuracy of human-defined masks was
superior to that of random masks for all three meth-
ods and both protocols (one-shot and five-shot). In
some instances, the differences were statistically
significant, as indicated by the STDs.

To conclude, the findings suggest that human-
defined masks are more effective than random
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threshold, along with the whole image TP, resulted
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vided implementation and default parameters, se-
lecting 25 features. The encoding module generated
coordinates for the estimated features, which were
used to generate a TP mask by creating a bounding
box around the detected features. The auto-encoder
was trained using the same parameters as [54]. We
compared the results of one-shot and five-shot clas-
sification on the three datasets using randomly cho-
sen masks as TPs and human-defined TPs. The
outcomes, including the average accuracy (AVE)
and standard deviation (STD) calculated from 600
randomly chosen episodes, are reported in Table
6. Additionally, Figure 9 depicts examples of ex-
tracted features from six different images across all
datasets.

The presented table displays the results of an
experiment that compared the effectiveness of three
distinct methods, namely SARSCOV2, COVCT,
and SIRM, in distinguishing between randomly
chosen masks and masks defined by humans. The
table showcases the accuracy (AVE ± STD) of each
method in recognizing the masks using two proto-
cols: one-shot and five-shot. The outcomes indicate
that human-defined masks performed better than
random masks in all cases, as expected. Specif-
ically, the accuracy of human-defined masks was
superior to that of random masks for all three meth-
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some instances, the differences were statistically
significant, as indicated by the STDs.

To conclude, the findings suggest that human-
defined masks are more effective than random
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Table 4. The impact of different similarity benchmarks on TPFSL’s performance.

distance COVCT SARSCOV2 SIRM
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Mahalanobis 67.5±1.1 84.3±0.7 77.4±1.1 91.2±0.7 70.3±0.8 68.4±0.5
Cosine 67.1±1.0 84.2±0.7 76.6+1.1 91.5±0.7 70.9±0.8 88.1±0.5
Manhattan 68.2±1.0 86.1±0.8 79.6±1.0 92.6±0.7 71.4±0.8 90.2±0.5
Euclidean 69.3±1.0 86.2±0.6 80.5±1.0 92.8±0.6 72.6±0.8 90.3±0.4

a) COVI-19

b) Non-COVID-19

Figure 9. Typical examples of extracted TPsfor six different images from all datasets.

Table 6. The performance comparison between Selected random masks and human-defined (Threshold)

Method COVCT SARSCOV2 SIRM
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Randomly generated masks 78.3±1.1 90.9±0.6 71.2±1.0 90.1±0.5 69.3±1.2 87.4±0.9

human-defined (Threshold) 80.5±1.0 92.8±0.6 72.6±0.8 90.9±0.4 69.9±1.1 89.6±0.8
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masks in the mask selection task. However, the
choice of method may vary depending on several
factors, such as the specific task requirements and
available resources. Nonetheless, it is important to
note that the study had limitations as it only exam-
ined two protocols (one-shot and five-shot), and the
generalizability of the results to other protocols re-
mains uncertain. Additionally, the study did not ex-
plore the potential impact of various elements, such
as the size and complexity of the masks or the ex-
pertise of the human annotators, on the performance
of the different methods.

Further research is required to investigate these
factors and extend the results to other tasks and pro-
tocols. Such studies would provide deeper insights
into the performance of different methods and facil-
itate informed decisions regarding their selection in
practical applications.

This section presents a comprehensive eval-
uation of TPFSL, a proposed model, on three
datasets, namely SARSCOV2, COVCT, and SIRM,
and compares its performance to benchmark mod-
els. As shown in Table 2, TPFSL outperformed all
benchmark models by a significant margin, achiev-
ing an average improvement of 4.50% and 4.43%
in one-shot and five-shot classification tasks, re-
spectively. In addition, TPFSL outperformed the
state-of-the-art model, ProtoNet, by 12.966% and
11.033% in one-shot and five-shot classification
tasks, respectively, across all three datasets.

To assess the impact of using a deeper Conv-
6 backbone, TPFSL’s performance was evaluated,
and the results demonstrated that TPFSL’s signif-
icant improvements were retained. Table 3 com-
pared TPFSL’s performance to that of an ensem-
ble of prototypical networks, and TPFSL’s perfor-
mance was evaluated with shared weights across all
TPs. The results showed that TPFSL significantly
outperformed the ensemble of ProtoNets, even with
shared weights across TPs. Furthermore, the per-
formance of TPFSL was minimally affected when
using shared weights across TPs.

To investigate how the number of TPs affects
TPFSL’s performance on the three datasets, a study
was conducted and presented in Figure 6. The
findings showed that increasing the number of TPs
consistently enhanced TPFSL’s performance on all
datasets. Surprisingly, even including a single TP,
which corresponds to a 10 dB threshold of the

whole image TP, led to an 11% and 6% improve-
ment in ProtoNet’s effectiveness on COVCT in one-
shot and five-shot classification tasks, respectively.
On the SARSCOV2, TPFSL achieved superior per-
formance compared to all benchmarks with only 8
TPs and outperformed ProtoNet by 8% and 18% in
one-shot and five-shot classification tasks, respec-
tively.

In conclusion, TPFSL demonstrated excellent
performance over state-of-the-art models on three
diverse datasets, suggesting that it is a promising
model for few-shot image classification tasks and is
robust to variations in the number of TPs and back-
bone architecture.

4.7 Time complexity analysis

Calculating the order of time complexity in Big
O notation for the TPFSL technique involves thor-
ough knowledge of the algorithm’s internal opera-
tions, such as the structure of its computations, the
structure of its data processing, and the effective-
ness of its learning mechanism. The following is a
high-level description of the methodology used to
determine TPFSL’s temporal complexity:

Data Processing: First, assume that the time
required to process each data point (or image) is
O(d), where d is the dimension of the data point
or its complexity. Processing the complete dataset
will take O(Nd) time if there are N data points in
total.

Model Architecture: The complexity intro-
duced by the model’s architecture is O(Lm) if there
are L layers in the model and if each layer requires
O(m) operations per data point.

Learning Mechanism: Third, an adaptive
learning mechanism is commonly used in FSL to
process new information swiftly. The complexity
of the learning mechanism would be O(kp) if the
adaptation required iterating over k shots, with each
iteration requiring O(p) operations.

Overall Time Complexity: Taking all of this
into account, we get an overall time complexity
for the TPFSL method of O(Nd + Lm + kp). This
approach, however, is oversimplified since it pre-
sumes that the processes in question are indepen-
dent and occur in a predetermined order.
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masks in the mask selection task. However, the
choice of method may vary depending on several
factors, such as the specific task requirements and
available resources. Nonetheless, it is important to
note that the study had limitations as it only exam-
ined two protocols (one-shot and five-shot), and the
generalizability of the results to other protocols re-
mains uncertain. Additionally, the study did not ex-
plore the potential impact of various elements, such
as the size and complexity of the masks or the ex-
pertise of the human annotators, on the performance
of the different methods.

Further research is required to investigate these
factors and extend the results to other tasks and pro-
tocols. Such studies would provide deeper insights
into the performance of different methods and facil-
itate informed decisions regarding their selection in
practical applications.

This section presents a comprehensive eval-
uation of TPFSL, a proposed model, on three
datasets, namely SARSCOV2, COVCT, and SIRM,
and compares its performance to benchmark mod-
els. As shown in Table 2, TPFSL outperformed all
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ing an average improvement of 4.50% and 4.43%
in one-shot and five-shot classification tasks, re-
spectively. In addition, TPFSL outperformed the
state-of-the-art model, ProtoNet, by 12.966% and
11.033% in one-shot and five-shot classification
tasks, respectively, across all three datasets.
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6 backbone, TPFSL’s performance was evaluated,
and the results demonstrated that TPFSL’s signif-
icant improvements were retained. Table 3 com-
pared TPFSL’s performance to that of an ensem-
ble of prototypical networks, and TPFSL’s perfor-
mance was evaluated with shared weights across all
TPs. The results showed that TPFSL significantly
outperformed the ensemble of ProtoNets, even with
shared weights across TPs. Furthermore, the per-
formance of TPFSL was minimally affected when
using shared weights across TPs.

To investigate how the number of TPs affects
TPFSL’s performance on the three datasets, a study
was conducted and presented in Figure 6. The
findings showed that increasing the number of TPs
consistently enhanced TPFSL’s performance on all
datasets. Surprisingly, even including a single TP,
which corresponds to a 10 dB threshold of the
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are L layers in the model and if each layer requires
O(m) operations per data point.
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Overall Time Complexity: Taking all of this
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sumes that the processes in question are indepen-
dent and occur in a predetermined order.
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Practical Considerations: Although the theo-
retical time complexity may be fixed, the actual run-
time may vary greatly depending on practical con-
siderations such as parallel processing, algorithm
improvements, and the efficiency of the underlying
hardware.

It should be highlighted that for real-time ap-
plications, the inference time is more significant
than the training time. Offline training of a TPFSL
model with a small sample size enables rapid de-
ployment for real-time inference.

5 Conclusion

In this study, the authors developed the TPFSL
method as an innovative strategy for the early iden-
tification and diagnosis of COVID-19. This method
utilizes automated evaluation of paralinguistic ele-
ments present in speech signals. One notable ben-
efit of TPFSL is its capacity to improve the ability
to generalize models by the utilization of human-
interpretable TP dimensions. This technique al-
lows for the amalgamation of outputs from indepen-
dent TP learners. The evaluation of TPFSL’s per-
formance was conducted on three well-established
datasets, comparing it to seven benchmark models.
The results indicated that TPFSL exhibited superior
performance compared to the leading benchmark
models in both the one-shot and five-shot classifi-
cation tasks, with average improvements of 4.50%
and 4.43%, respectively. In all datasets examined,
the TPFSL method demonstrated a statistically sig-
nificant enhancement of 12.966% and 11.033%, re-
spectively, as compared to the ProtoNet benchmark
in the context of one-shot and five-shot classifica-
tion tasks. The technique that has been developed
exhibits the potential for enhancing the precision
and efficiency of COVID-19 diagnosis within clini-
cal environments. In conclusion, the results indicate
that TPFSL exhibits potential as a viable method for
improving the precision of diagnoses pertaining to
these particular illnesses.

However, TPFSL has some limitations that need
to be addressed. One major limitation is its heavy
reliance on the availability of paralinguistic features
in speech signals, which may not always be present
in real-world scenarios. Additionally, the evalua-
tion of TPFSL was limited to only three datasets,

which may not provide a comprehensive assess-
ment of the model’s effectiveness in all scenarios.

In order to augment the capabilities and broaden
the scope of the TPFSL model in the field of med-
ical diagnosis, subsequent research should pursue
various critical avenues. It is imperative to enhance
the generalizability of TPFSL to encompass larger
and more diverse datasets. This encompasses not
only the expansion of the range of medical data but
also the utilization of the model in other categories
of biomedical information, including genomic data,
imaging modalities, and electronic health records.

Enhancing the interpretability of the acquired
representations in TPFSL constitutes another cru-
cial domain. Enhancing the comprehension of the
model’s diagnostic prediction process will facili-
tate medical practitioners in making more informed
judgments. This may entail the advancement of
novel methodologies for displaying and assessing
the decision-making processes of the model, partic-
ularly in intricate clinical circumstances.

The incorporation of TPFSL with sophisti-
cated machine learning methodologies such as deep
learning or transfer learning offers substantial po-
tential. The integration of many components has the
potential to improve the diagnostic accuracy and ef-
ficiency of the model, particularly in the context of
uncommon diseases or complex clinical conditions
where access to extensive data is limited.

Furthermore, the exploration of the utilization
of TPFSL in the field of customized medicine
would represent a highly worthwhile avenue of re-
search. The utilization of Tailored Patient-Focused
Strategies for Medical Diagnosis and Treatment has
the potential to enhance the efficacy and precision
of healthcare interventions by customizing them to
specific patient characteristics.

Another intriguing path to be explored is the
utilization of TPFSL in real-time diagnostic appli-
cations. This entails examining the optimal imple-
mentation of the model within clinical contexts to
promptly assess patients, with potential advantages
in emergency medicine or intensive care settings.

Moreover, the utilization of Temporal Pattern
Mining for Sequential Data in the field of predic-
tive health analytics is a promising avenue for fur-
ther investigation. This encompasses the utiliza-
tion of the model for the purpose of forecasting the
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advancement of diseases, determining patient out-
comes, or assessing the probability of disease re-
currence. Such applications can play a crucial role
in the proactive management of healthcare.

Finally, it is of utmost importance to take into
account the ethical ramifications and data privacy
issues associated with the utilization of AI models
such as TPFSL in the field of medical diagnostics.
Subsequent investigations must focus on these di-
mensions, guaranteeing that the model conforms to
ethical norms and legal obligations, all the while
upholding patient confidentiality and safeguarding
data security.

The proposed research directions seek to make
substantial progress in the field of medical diagnos-
tics by utilizing the TPFSL model. This approach
is intended to address existing obstacles and predict
future requirements in the healthcare sector.
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Table 4. The impact of different similarity benchmarks on TPFSL’s performance.

distance COVCT SARSCOV2 SIRM
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Mahalanobis 67.5±1.1 84.3±0.7 77.4±1.1 91.2±0.7 70.3±0.8 68.4±0.5
Cosine 67.1±1.0 84.2±0.7 76.6+1.1 91.5±0.7 70.9±0.8 88.1±0.5
Manhattan 68.2±1.0 86.1±0.8 79.6±1.0 92.6±0.7 71.4±0.8 90.2±0.5
Euclidean 69.3±1.0 86.2±0.6 80.5±1.0 92.8±0.6 72.6±0.8 90.3±0.4

a) COVI-19

b) Non-COVID-19

Figure 9. Typical examples of extracted TPsfor six different images from all datasets.

Table 6. The performance comparison between Selected random masks and human-defined (Threshold)

Method COVCT SARSCOV2 SIRM
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Randomly generated masks 78.3±1.1 90.9±0.6 71.2±1.0 90.1±0.5 69.3±1.2 87.4±0.9

human-defined (Threshold) 80.5±1.0 92.8±0.6 72.6±0.8 90.9±0.4 69.9±1.1 89.6±0.8
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