Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Background: Breast cancer is a deadly disease responsible for statistical yearly global death. Identification of cancer tumors is quite tasking, as a result, concerted efforts are thus devoted. Clinicians have used ultrasounds as a diagnostic tool for breast cancer, though, poor image quality is a major limitation when segmenting breast ultrasound. To address this problem, we present a semantic segmentation method for breast ultrasound (BUS) images. Method: The BUS images were resized and then enhanced with the contrast limited adaptive histogram equalization method. Subsequently, the variant enhanced block was used to encode the preprocessed image. Finally, the concatenated convolutions produced the segmentation mask. Results: The proposed method was evaluated with two datasets. The datasets contain 264 and 830 BUS images respectively. Dice measure (DM), Jaccard measure, and Hausdroff distance were used to evaluate the methods. Results indicate that the proposed method achieves high DM with 89.73% for malignant and 89.62% for benign BUSs. Moreover, the results obtained validate the capacity of the proposed method to achieve higher DM in comparison with reported methods. Conclusion: The proposed algorithm provides a deep learning segmentation procedure that can segment tumors in BUS images effectively and efficiently.
Wydawca
Czasopismo
Rocznik
Tom
Strony
802--818
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
autor
- School of ICT, Sirindhorn International Institute of Technology, Thammasat University, Thailand
autor
- Department of Radiology, Thammasat University, Pathum Thani, Thailand
autor
- School of ICT, Sirindhorn International Institute of Technology, Thammasat University, Thailand
Bibliografia
- [1] Zhang Zi, Rao R, Mango VL, Wilson-Gardner P, Vempalle S, Ojutiku O. Presentation of self-detected breast mass in minority women with limited access to care: Can selfexamination assist in early cancer detection? Clin Imaging 2021;70:89–92.
- [2] Nishikawa RM, Gur D. CADe for early detection of breast cancer—current status and why we need to continue to explore new approaches. Acad Radiol 2014;21:1320–1.
- [3] Kriti, Virmani J, Agarwal R. Effect of despeckle filtering on classification of breast tumors using ultrasound images. Biocybernetics Biomed Eng 2019;39(2):536–60.
- [4] Ramadan H, Lachqar C, Tairi H. Saliency-guided automatic detection and segmentation of tumor in breast ultrasound images. Biomed Signal Process Control 2020;60:101945.
- [5] Maes F, Vandermeulen D, Suetens P, Marchal G. Automatic image partitioning for generic object segmentation in medical images. Comput Imaging Vision 1995.
- [6] Lu R, Marziliano P, Thng CH. Liver tumor volume estimation by semi-automatic segmentation method. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. p. 3296–9.
- [7] Zhao B, Yankelevitz D. Two-dimensional multi-criterion segmentation of pulmonary nodules on helical CT images. Med Phys 1999;26(6):4678–89.
- [8] Xian M, Zhang Y, Cheng HD. Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Pattern Recogn 2015;48:485–97.
- [9] Sapate S, Talbar S, Mahajan A, Sable N, Desai S, Thakur M. Breast cancer diagnosis using abnormalities on ipsilateral views of digital mammograms. Biocybernetics Biomed Eng 2020;40(1):290–305.
- [10] Atkins MS, Mackiewich BT. Fully automatic segmentation of the brain in MRI. IEEE Trans Med Imaging 1998;17(1):98–107.
- [11] Campadelli P, Casiraghi E, Pratissoli S. Fully automatic segmentation of abdominal organs from CT images using fast marching methods. In: 2008 21st IEEE International Symposium on Computer-Based Medical Systems, Jyvaskyla, Finland. p. 554–9. DOI: 10.1109/CBMS.2008.9.
- [12] Xian M, Zhang Y, Cheng HD, Xu F, Zhang B, Ding J. Automatic breast ultrasound image segmentation: A survey. Pattern Recogn 2018;79:340–55.
- [13] Ilesanmi AE, Idowu OP, Makhanov SS. Multiscalesuperpixel method for segmentation of breast ultrasound. Comput Biol Med 2020;125:103879.
- [14] Kucybała I, Tabor Z, Ciuk S, Chrzan R, Urbanik A, Wojciechowski W. A fast graph-based algorithm for automated segmentation of subcutaneous and visceral adipose tissue in 3D abdominal computed tomography images. Biocybernetics Biomed Eng 2020;40(2):729–39.
- [15] Gamarra M, Zurek E, Escalante HJ, Hurtado L, San-JuanVergara H. Split and merge watershed: A two-step method for cell segmentation in fluorescence microscopy images. Biomed Signal Process Control 2019;53:101575.
- [16] Yu H, Yang Z, Tan L, Wang Y, Sun W, Sun M, et al. Methods and datasets on semantic segmentation: A review. Neurocomputing 2018;304:82–103.
- [17] Ilesanmi AE, Chaumrattanakul U, Makhanov SS. Methods for the segmentation and classification of breast ultrasound images: a review. J Ultrasound 2021. https://doi.org/10.1007/ s40477-020-00557-5.
- [18] Gómez-Flores W, Coelho de Albuquerque Pereira W. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound. Comput Biol Med 2020;126:104036.
- [19] Yang J, Faraji M, Basu A. Robust segmentation of arterial walls in intravascular ultrasound images using Dual Path U-Net. Ultrasonics 2019;96:24–33.
- [20] Li C, Tan Y, Chen W, Luo X, He Y, Gao Y, et al. ANU-Net: Attention-based nested U-Net to exploit full resolution features for medical image segmentation. Computers Graphics 2020;90:11–20.
- [21] Lian S, Luo Z, Zhong Z, Lin X, Su S, Li S. Attention guided UNet for accurate iris segmentation. J Vis Commun Image Represent 2018;56:296–304.
- [22] Huang Q, Huang Y, Luo Y, Yuan F, Li X. Segmentation of breast ultrasound image with semantic classification of superpixels. Med Image Anal 2020;61 101657.
- [23] Kumar V, Webb JM, Gregory A, Denis M, Meixner DD, Bayat M, et al. Automated and real-time segmentation of suspicious breast masses using convolutional neural network. PLoS ONE 2018;13(5):e0195816.
- [24] Hiramatsu Y, Muramatsu C, Kobayashi H, Hara T, Fujita H. Automated detection of masses on whole breast volume ultrasound scanner: false positive reduction using deep convolutional neural network. In: Proceedings of the SPIE Medical Imaging; 2017 Feb 11–16; Orlando, FL, USA. Bellingham: SPIE; 2017.
- [25] Reza SMS, Bradley D, Aiosa N, Castro M, Lee JH, Lee B-Y, et al. Deep learning for automated liver segmentation to aid in the study of infectious diseases in nonhuman primates. Acad Radiol 2020. https://doi.org/10.1016/j.acra.2020.08.023.
- [26] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer; 2015. p. 234–41.
- [27] Milletari F, Navab N, Ahmadi S-A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV). IEEE; 2016. p. 565–71.
- [28] T-Y. Lin, P. Doll_ar, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 20172117–2125.
- [29] Vakanski A, Xian M, Freer PE. Attention-enriched deep learning model for breast tumor segmentation in ultrasound images. Ultrasound Med Biol 2020;46(10):2819–33.
- [30] Byra M, Jarosik P, Szubert A, Galperin M, Ojeda-Fournier H, Olson L, et al. Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network. Biomed Signal Process Control 2020;61 102027.
- [31] Kulkarni S, Seneviratne N, Baig MS, Khan AHA. Artificial intelligence in medicine: Where are we now? Acad Radiol 2020;27(1):62–70.
- [32] von Landesberger T, Bremm S, Kirschner M, Wesarg S, Kuijper A. Visual Analytics for model-based medical image segmentation: Opportunities and challenges. Expert Syst Appl 2013;40(12):4934–43.
- [33] Rodtook A, Kirimasthong K, Lohitvisate W, Makhanov SS. Automatic initialization of active contours and level set method in ultrasound images of breast abnormalities. Pattern Recogn 2018;79:172–82.
- [34] Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data in brief 2020;28 104863.
- [35] Wang H, Wang S, Qin Z, Zhang Y, Li R, Xia Y. Triple attention learning for classification of 14 thoracic diseases using chest radiography. Med Image Anal 2021;67:1094–109.
- [36] Wang S, Cheng H, Ying L, Xiao T, Ke Z, Zheng H, et al. DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution. Magn Reson Imaging 2020;68:136–47.
- [37] Hua W, Xiao T, Jiang X, Liu Z, Wang M, Zheng H, et al. Lymphvascular space invasion prediction in cervical cancer: exploring radiomics and deep learning multilevel features of tumor and peritumor tissue on multiparametric MRI. Biomed Signal Process Control 2020;58:101869.
- [38] Ali Y, Janabi-Sharifi F, Beheshti S. Echocardiographic image segmentation using deep Res-U network. Biomed Signal Process Control 2021;64:102248.
- [39] Sonali, Sahu S, Singh AK, Ghrera SP, Elhoseny M. An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Opt Laser Technol 2019;110:87–98.
- [40] Balocco S, Gatta C, Pujol O, Mauri J, Radeva P. SRBF: Speckle reducing bilateral filtering. Ultrasound Med Biol 2010;36:1353–63.
- [41] M.F. Rachmadi, M.D.C. Valde´s-Herna´ndez, M.L.F. Agan, T. Komura, Deep Learning vs. Conventional Machine Learning: Pilot Study of WMH Segmentation in Brain MRI with Absence or Mild Vascular Pathology, Journal of Imaging, 3 (2017), 66.
- [42] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G.V. Hernandez, L. Krpalkova et al., Deep learning vs. Traditional Computer Vision. In Proceedings of the Science and Information Conference, Tokyo, Japan; Springer: Berlin/ Heidelberg, Germany, 2019; 128–144.
- [43] Andy Lee. Comparing deep neural networks and traditional vision algorithms in mobile robotics. Swarthmore College, 2015.
- [44] Tang KJW, Ke En Ang C, Theodoros C, Rajinikanth V, Acharya UR, Cheong KH, Artificial Intelligence and machine learning in Emergency Medicine, Biocybernetics Biomed Eng, 2020.
- [45] Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C. The importance of skip connections in biomedical image segmentation. Workshop on Deep Learning Med Image Anal, 2016. https://arxiv.org/abs/1608.04117v2.
- [46] Yu D, Wang H, Chen P, Wei Z, Mixed pooling for convolutional neural networks, in Rough Sets Knowl. Technol., Cham, Switzerland: Springer, pp. 364-375, 2014.
- [47] Krizhevsky A, Sutskever I, Hinton G, Imagenet classification with deep convolutional neural networks, in: Proceedings of the NIPS, 2012, pp. 1097–1105, DOI: 10.1145/3065386.
- [48] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al., Going deeper with convolutions, in: Proceedings of the CVPR, 2015, pp. 1–9, doi: 10.1109/CVPR. 2015, 7298594.
- [49] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the CVPR. p. 770–8. doi: 10.1109/CVPR.2016.90.
- [50] Arrett K, Kavukcuoglu K, Ranzato M, LeCun Y. What is the best multi-stagearchitecture for object recognition? In: ICCV, pp. 2146–2153 (2009).
- [51] Tong Z, Tanaka G. Hybrid pooling for enhancement of generalization ability in deep convolutional neural networks. Neurocomputing 2019;333:76–85.
- [52] Chang J, Zhang L, Gu N, Zhang X, Ye M, Yin R, et al. A mixpooling CNN architecture with FCRF for brain tumor segmentation. J Vis Commun Image Represent 2019;58:316–22.
- [53] Ilesanmi AE, Idowu OP, Chaumrattanakul U, Makhanov SS. Multiscale hybrid algorithm for pre-processing of ultrasound images. Biomed Signal Process Control 2021;66:102396.
- [54] Karunanayake N, Aimmanee P, Lohitvisate W, Makhanov SS. Particle method for segmentation of breast tumors in ultrasound images. Math Comput Simul 2020;170:257–84.
- [55] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, Software Available from tensorflow. Org, 2015.
- [56] Kingma DP, Ba J, Adam: A Method for Stochastic Optimization. Available from: arXiv preprint arXiv:1412.6980.
- [57] Li X, Wang Y, Tang Q, Fan Z, Yu J. Dual U-Net for the segmentation of overlapping glioma nuclei. IEEE Access 2019;7:84040–52.
- [58] Chen T, Cai Z, Zhao X, Chen C, Liang X, Zou T, et al. Pavement crack detection and recognition using the architecture of SegNet. J Ind Inf Integration 2020;18:100144.
- [59] Ibtehaz N, Rahman MS, MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks,121(2020), 74-87.
- [60] Wong T-T. Parametric methods for comparing the performance of two classification algorithms evaluated by kfold cross validation on multiple data sets. Pattern Recogn 2017;65:97–107.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-486b2576-0a67-4863-817e-c4a7d74eba4d