PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Active power decoupling topology for AC-DC and DC-AC single-phase systems with decoupling capacitor minimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Passive power decoupling in single-phase DC-AC and AC-DC systems usually requires usage of electrolytic capacitors. To minimize converter volume, increase reliability, robustness and to eliminate ripple power effect on the DC side, new solutions for Active Power Decoupling are proposed. In this paper a novel Active Power Decoupling topology for low power single-phase AC-DC and DC-AC converters is presented. The proposed topology is based on well-known boost and buck-boost topologies but with a completely different control scheme. The topology description with a complete control algorithm is presented. The proposed APD solution is verified by experimental results of a 450 W converter in AC-DC mode and a 320 W converter in DC-AC mode.
Rocznik
Strony
193--205
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wz.
Twórcy
  • AGH University of Science and Technology
autor
  • Rzeszow University of Technology
Bibliografia
  • [1] Li S., Qi W., Tan S.C., Hui S.Y.(R.), Integration of an Active Filter and a Single-Phase AC/DC Converter With Reduced Capacitance Requirement and Component Count, IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4121–4137 (2016).
  • [2] Sun Y., Liu Y., Su M., Li X., Yang J., Active Power Decoupling Method for Single-Phase Current-Source RectifierWith No Additional Active Switches, IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5644–5654 (2016).
  • [3] Sun Y., Liu Y., Su M., Xiong W., Yang J., Review of Active Power Decoupling Topologies in Single-Phase Systems, IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 4778–4794 (2016).
  • [4] Farhangi H., The path of the smart grid, IEEE Power and Energy Magazine, vol. 8, no. 1, pp. 18–28 (2010).
  • [5] Ipakchi A., Albuyeh F., Grid of the future, IEEE Power and Energy Magazine, vol. 7, no. 2, pp. 52–62 (2009).
  • [6] Li F. et al., Smart Transmission Grid: Vision and Framework, IEEE Transactions on Smart Grid, vol. 1, no. 2, pp. 168–177 (2010).
  • [7] Kjaer S.B., Pedersen J.K., Blaabjerg F., A review of single-phase grid-connected inverters for photo-voltaic modules, IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1292–1306 (2005).
  • [8] Su M., Pan P., Long X., Sun Y., Yang J., An Active Power-Decoupling Method for Single-Phase AC–DC Converters, IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 461–468 (2014).
  • [9] Zhang H., Li X., Ge B., Balog R.S., Capacitance, dc Voltage Utilization, and Current Stress: Comparison of Double-Line Frequency Ripple Power Decoupling for Single-Phase Systems, IEEE Industrial Electronics Magazine, vol. 11, no. 3, pp. 37–49 (2017).
  • [10] Qin Z., Tang Y., Loh P.C., Blaabjerg F., Benchmark of AC and DC Active Power Decoupling Circuits for Second-Order Harmonic Mitigation in Kilowatt-Scale Single-Phase Inverters, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 1, pp. 15–25 (2016).
  • [11] Wang H., Liserre M., Blaabjerg F., Toward Reliable Power Electronics: Challenges, Design Tools, and Opportunities, IEEE Industrial Electronics Magazine, vol. 7, no. 2, pp. 17–26 (2013).
  • [12] Stawiarski Ł., Minimizing the energy parameters of the decoupling capacitor in a single phase AC–DC converter, Electrical Review (in Polish), vol. 90, no. 10, pp. 192–198 (2014).
  • [13] Stawiarski Ł., Piróg S., Minimizing the energy parameters of the decoupling capacitor and elimination of a double frequency component on the DC side in a single phase DC–AC converter, Electrical Review (in Polish), vol. 91, no. 5, pp. 80–87 (2015).
  • [14] Xia Y., Roy J., Ayyanar R., A Capacitance-Minimized, Doubly Grounded Transformer less Photovoltaic Inverter with Inherent Active-Power Decoupling, IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5188–5201 (2017).
  • [15] Liu C., Lai J.S., Low Frequency Current Ripple Reduction Technique with Active Control in a Fuel Cell Power System with Inverter Load, IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1429–1436 (2007).
  • [16] Shimizu T., Wada K., Nakamura N., Flyback-Type Single-Phase Utility Interactive Inverter with Power Pulsation Decoupling on the DC Input for an AC Photovoltaic Module System, IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1264–1272 (2006).
  • [17] Tan G.H., Wang J.Z., Ji Y.C., Soft-switching flyback inverter with enhanced power decoupling for photovoltaic applications, IET Electric Power Applications, vol. 1, no. 2, pp. 264–274 (2007).
  • [18] Wang R. et al., A High Power Density Single-Phase PWM Rectifier with Active Ripple Energy Storage, IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 1430–1443 (2011).
  • [19] Kawa A., Penczek A., Piróg S. DC-DC boost-flyback converter functioning as input stage for one phase low power grid-connected inverter, Archives of Electrical Engineering, vol. 63, no. 3, pp. 393–407 (2014).
  • [20] Stawiarski Ł., Single phase DC-AC and AC-DC converters with the elimination of double frequency component on the DC side, PhD Thesis (in Polish), Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Kraków (2015).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4866d434-009f-403e-a33a-262b1e30dbdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.