PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sonar pulse detection using chirp rate estimation and CFAR algorithms

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a new approach to sonar pulse detection. The method uses chirp rate estimators and algorithms for the adaptive threshold, commonly used in radiolocation. The proposed approach allows detection of pulses of unknown parameters, which may be used in passive hydrolocation or jamming detection in underwater communication. Such an analysis is possible thanks to a new kind of imaging, which presents signal energy in the function of chirp rate. The proposed method relies on chirp rate estimation of the received signal, and the calculation of the local threshold level depends on noise and reverberations which make detection of a particular type of signal possible.
Czasopismo
Rocznik
Tom
Strony
7--12
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics G.Narutowicza 11/12, 80-980 Gdansk, Poland
Bibliografia
  • [1] J. Liang, K.M. Wong, Detection of Narrow-Band Sonar Signal on a Riemannian Manifold, 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 959-964.
  • [2] R.W. Mill, G.J. Brown, Auditory-inspired Interval Statistic Receivers for Passive Sonar Signal Detection, OCEANS 2007 - Europe, pp. 1-6.
  • [3] K. Ugrinovic, O. Ponic, An outline of the passive sonar signal detection, Proceedings. Elmar-2004. 46th International Symposium on Electronics in Marine, pp. 247-251.
  • [4] M.K. Ward, M. Stevenson, Sonar Signal Detection and Classification using Artificial Neural Networks, 2000 Canadian Conference on Electrical and Computer Engineering, vol. 2 pp. 717-721.
  • [5] K. Czarnecki, The instantaneous frequency rate spectrogram, Mechanical Systems and Signal Processing, vol.66-67, pp. 361-373, 2016.
  • [6] A.E. Barnes, The calculation of instantaneous frequency and instantaneous bandwidth, Geophysics, vol. 57, no. 11, pp. 1520-1524. 1992.
  • [7] D. Fourer, F. Auger, K. Czarnecki, S. Meignen, P. Flandrin, Chirp rate and instantaneous frequency estimation: application to recursive vertical synchrosqueezing, IEEE Signal Processing Letters, vol. 24, no. 11, pp. 1724-1728, 2017.
  • [8] F. Auger, K. Czarnecki, D. Fourer, ccROJ - Time-Frequency C++ Framework, SoftwareX, 2017. Project webpage: https://github.com/dsp-box/ccROJ.
  • [9] L. Anitori, M. Otten, A. Maleki, Compressive CFAR Radar Detection, 2012 IEEE Radar Conference, pp. 320-325.
  • [10] P.P. Gandhi, S.A. Kassam, Analysis of CFAR Processors in Nonhomogeneous Background, IEEE Transactions On Aerospace And Electronic Systems, vol. 24, no. 4, 1988.
  • [11] M. Barkat, S. Dib, CFAR detection for two correlated targets, Signal Processing, vol. 61, no. 3, pp. 289-295, 1997.
  • [12] Y. Sun, M. Farooq, T.K. Robb, Adaptive CFAR active sonar signal thresholding using radial basis functional neural networks, Proceedings of the 36th IEEE Conference on Decision and Control, vol. 3, pp. 2193-2198, 1997.
  • [13] B. Kalyan, A. Balasuriya, Sonar based automatic target detection scheme for underwater environments using CFAR techniques: a comparative study, Proceedings of the 2004 International Symposium on Underwater Technology, pp. 33-37.
  • [14] V. Anastassopoulos, G. Lampropoulos, A New and Robust CFAR Detection Algorithm, IEEE Transactions on Aerospace and Electronic Systems, vol. 28, no. 2, pp. 420-427, 1992
  • [15] H. Dai, L Du, Y. Wang, A Modified CFAR Algorithm Based on Object Proposals for Ship Target Detection in SAR Images, IEEE Geoscience and Remote Sensing Letters vol. 13, no. 12, pp. 1925-1929, 2016.
  • [16] G.G. Acosta, S.A. Villar, Accumulated CA-CFAR Process in 2-D for Online Object Detection From Sidescan Sonar Data, IEEE Journal of Oceanic Engineering vol. 40, no. 3, pp. 558-569, 2015.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4863f526-b130-49bd-a709-39ba37f4682e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.