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This paper presents a new approach to sonar pulse detection. The method uses chirp
rate estimators and algorithms for the adaptive threshold, commonly used in radiolocation. The
proposed approach allows detection of pulses of unknown parameters, which may be used in
passive hydrolocation or jamming detection in underwater communication. Such an analysis
is possible thanks to a new kind of imaging, which presents signal energy in the function of
chirp rate. The proposed method relies on chirp rate estimation of the received signal, and
the calculation of the local threshold level depends on noise and reverberations which make
detection of a particular type of signal possible.
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1. Introduction
Detection of sonar pulses is a technique widely described in the literature [1–4]. This is a

very important task in the field of combat, and in electronic warfare in the aquatic environment.
The problem is to choose a detection threshold value that is strongly dependent on the propa-
gation conditions, the presence of other devices, and the parameters of the system being used.
Too high a detection threshold in a variable environment can result in no signal being detected,
while too low a threshold will cause the noise to exceed it. The proposed method is free of this
problem. It not only detects the existence of a transmitter, but also allows the identification and
classification of these signals.

Part 2 shows the theoretical basics for chirp rate estimation. Used approach and the math-
ematical foundations are described. Part 3 describes three CFAR algorithms used in this method
to calculate the adaptive detection threshold. Part 4 contains simulation results for three estima-
tors and three CFAR algorithms.

2. Chirp rate estimation
There are several methods of chirp rate estimation [5–7]. The selected method uses the ap-

proach described in [7] and according to this, the process is based on operations on a short-time
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Fourier transform. By modifying the signal in the time-frequency domain, it is possible to dis-
tinguish information about the phase changes of each components. The following terminology
will be useful for describing estimators. x(t) is a time domain signal defined as:

x(t) = Ax(t)exp(jΦx(t)), (1)

characterized by the amplitude and phase described respectively:

Ax(t) = Axexp(−(t− tx)2/(2T 2
x )), (2)

Φx(t) = φx + ωxt+ αt2/2, (3)

where ωx is pulsation, α is chirp rate. Then, the short-time Fourier transform on signal x(t) can
be calculated using following manner:

F h
x (t, ω) =

∫
R
x(u)h(t− u)e−jωudu = e−jωu

∫
R
x(t− u)h(u)ejωudu. (4)

In Eq. (4) the window h(t) is used, but in general it is possible to use the window derivative
(n-th order) as well as window multiplied by time ramp (also n-th order), respectively:

Dnh(t) =
dnh(t)

dtn
, (5)

T nh(t) = tnh(t). (6)

In STFT symbol F h
x (t, ω), lower index indicates signal under consideration, and higher index

corresponds to used window. According to the above terminology, it is possible to introduce
three chirp rate estimators respectively K, D, F.

K(t, ω) =
<(FDhx (t, ω)F h

x (t, ω)∗)

=(F T hx (t, ω)F h
x (t, ω)∗)

, (7)

D(t, ω) = =

(
FD

2h
x (t, ω)F h

x (t, ω)− FDhx (t, ω)2

FDhx (t, ω)F T hx (t, ω)− F T Dhx (t, ω)F h
x (t, ω)

)
, (8)

F(t, ω) = =
(
F T Dhx (t, ω)F h

x (t, ω) + F h
x (t, ω)2 − F T hx (t, ω)FDhx (t, ω)

F T hx (t, ω)2 − F T 2h
x (t, ω)F h

x (t, ω)

)
, (9)

where (·)∗ is the complex conjugate, < is real part, as well as = is imaginary part. The K
estimator is based on the first derivative of the window h(t). The D estimator is generated by
differentiation K estimator with respect to time (separately numerator and denominator), and
the F estimator is generated by differentiation of the K estimator with respect to frequency (also
separately the numerator and the denominator).

Fig. 1 presents chirp rate estimation results for simulated signal with chirp rate α =
500Hz/s, sampled with frequency fs = 1000Hz with SNR=20dB. All images were obtained
by using [8]. Fig. 1a presents accelerogram in time-frequency domain, and Fig. 1b shows an
exampleR profile. The second image is similar to the histogram, because it checks the amount
of each chirp rate values of a given range. Profile additionally contains information about the
energy carried by a particular component, characterized by a given chirp rate.
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(a) Accelerogram obtained using
F estimator.

(b) CorrespondingR profile.

Fig. 1. Chirp rate estimation results. Accelerogram (a) andR profile (b).

3. Constant False Alarm Rate Algorithms
CFAR algorithms are commonly known in radiolocation and hydrolocation [9–16]. In

general, these are algorithms that allow one to estimate the adaptive threshold depending on
noise and interference. The conventional approach assumes the analysis of the received signal’s
spectrum and the detection of peaks with energy exceeding the noise level. In a variable prop-
agation environment, the detection threshold must be reconfigurable, which can be achieved by
these algorithms. Fig. 2 shows a simplified block diagram of this method. The structure per-
forms calculations for each point of the data vector. In a single iteration, the CUT (Cell Under
Test) is processed. Around it there are M guard cells (M/2 on each side of CUT), ignored during
calculation (in blue). Reference cells are colored in green. The number of these cells is deter-
mined and is N (N/2 on each side of CUT). The reference cells are summed (independently,
on each side of the CUT) and fed to a logic block whose functionality depends on the selected
algorithm. The result of the calculation is multiplied by the scaling factor and then passed to the
detector where it is decided whether the object was detected or not.

Fig. 2. CFAR block diagram.

In general, the detection threshold is calculated as the product of the scaling factor and the
noise power estimates according to the following expression:

T = α · Pn, (10)

whereα is the scaling factor (depends on selected algorithm), andPn is the power noise estimate.
This article presents 3 selected algorithms. The first one is CA CFAR (Cell Averaging Constant
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False Alarm Rate). The detection threshold for this method is determined as follows:

TCA = N(P
−1/N
fa − 1) · 1

N

∑
AB, (11)

whereN is is the number of reference cells, Pfa is the probability of a false alarm, while the sum∑
AB is, according to Fig. 2, the summed reference cell values on both sides of the CUT. The

first component of the product α = N(P
−1/N
fa − 1) is a scaling factor and the second is the noise

power estimate Pn = 1
N

∑
AB. The same approach applies to the other two algorithms. The

second one is GOCA CFAR (Greatest of Cell Averaging CFAR). This is a modification of the
first discussed method, and assumes noise power estimates as the greatest of the

∑
A and

∑
B.

The expression is described as follows:

TGOCA = N(P
−1/N
fa − 1) ·max

(∑
A,
∑

B

)
. (12)

The symbols are the same as in the CA CFAR method. The last considered approach is OS
CFAR (Order Statistic CFAR). The method uses the percentile calculated from the

∑
A and∑

B as the noise power estimate. In this approach, the scaling factor is calculated differently
from the two methods discussed. In general, the detection threshold is calculated as follows:

TOS = ln

(
1

Pfa

)
· percentile

(∑
A,
∑

B

)
. (13)

A block that realizes the described CFAR algorithms can be located directly after the signal
amplifier at the receiver, or at the output of the matched filter. In the first case, however, it is
required that the SNR level is no less than 0dB (which in most cases is unreachable).

Fig. 3. Example of sonar pulse detection.

Fig. 3 shows an example of the results of sonar pulse detection. The simulated received
signal was represented in the time-frequency domain, the chirp rate of pulse was calculated, and
the results were presented as anR profile. This profile was used as the input vector for the CFAR
algorithms. The figure shows how the detection threshold changes its local value depending on
the level of noise on theR profile.

4. Results
As part of the experiment, the minimum likelihood of a false alarm with which the system

can work is investigated. This is information about the reliability of the whole device. The test
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Tab. 1. Signal parameters.

Chirp rate
[
Hz
s

]
Carrier freuency [kHz] Pulse duration [ms] Sampling rate [kHz] SNR[dB]

750 1 10 3 0,10,20,30,40

Tab. 2. CFAR algorithms parameters.

Number of points onR profile N M Percentile (OS CFAR) %
4096 200 100 60

signal input was a sample sonar pulse with the parameters given in Tab. 1, and Tab. 2 presents
CFAR algorithms assumptions. For each SNR of {0, 10, 20, 30, 40} and for each estimator (K,
D and F), the minimum probability of a false alarm was calculated. The results are shown in
Fig. 4.

(a) CA CFAR. (b) GOCA CFAR.

(c) OS CFAR.

Fig. 4. Minimum probability of false alarm for all SNR and chirp rate values and each CFAR algorithm.

It turns out that, contrary to expectations, the best results for each algorithm are the es-
timator K (the system can work with the lowest probability of false alarm). Theoretically, this
estimator is characterized by the worst parameters: it is ineffective for AM modulation signals,
and near the attractor (the line around which the energy of component in the time-frequency
domain is focused) the accuracy of the estimator is near to zero. For the selected chirp rate
representation method, components for which the accuracy of the estimation is close to zero are
outside the profile areaR . Due to the limited range of observation of the chirp rate, the estima-
tion errors for the estimator K are omitted. It should also be noted that the results are correct for
the given simulation conditions and the assumed time window width (83ms). Estimator F was
worse than estimator K, while for estimator D the worst results were obtained. The charts for
the CFAR algorithms are similar, and the convergence of the results is perceptible.

5. Conclusion
In this paper a new approach to sonar pulse detection has been examined. The basic con-

cept of chirp rate estimation has been introduced, and three CFAR algorithms have been se-
lected and implemented to adapt the selection of detection thresholds in the presence of noise.
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The paper compares the results of the sonar pulses detection for the three introduced chirp rate
estimators and the three discussed CFAR algorithms.
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