Identyfikatory
Warianty tytułu
Przegląd pasm częstotliwości i modeli kanałów przewidywanych dla sieci 6G
Języki publikacji
Abstrakty
This paper analyzes the frequency bands and channel models that are potentially applicable in 6G networks such as: low band (below 1 GHz), mid-band (1-24 GHz) and high band (24-300 GHz) and deterministic channel modeling, stochastic channel modeling and combined stochastic-deterministic channel modeling, respectively. Given the exceptional attributes of the THz spectrum, it is imperative to develop a deeper understanding of its characteristics, part of which also constitutes the employment of innovative techniques to model and measure channel characteristics.
W artykule dokonano analizy pasm częstotliwości i modeli kanałowych mających potencjalne zastosowanie w sieciach 6G, takich jak: dolnopasmowe (poniżej 1 GHz), średniopasmowe (1-24 GHz) i górnopasmowe (24-300 GHz) oraz deterministyczne modelowanie kanałów, odpowiednio stochastyczne modelowanie kanałów i kombinowane stochastyczno-deterministyczne modelowanie kanałów. Biorąc pod uwagę wyjątkowe cechy widma THz, konieczne jest głębsze zrozumienie jego charakterystyki, czego częścią jest również zastosowanie innowacyjnych technik do modelowania i pomiaru charakterystyki kanału.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
44--52
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
- University of Ljubljana, Tržaška c. 25, 1000 Ljubljana, Slovenia
- University of Prishtina, Faculty of Electrical and Computer Engineering (Alumni), Street: Sunny Hill, nn, 10000, Prishtina, Republic of Kosovo
autor
- University of Prishtina, Faculty of Electrical and Computer Engineering (Alumni), Street: Sunny Hill, nn, 10000, Prishtina, Republic of Kosovo
autor
- University of Ljubljana, Tržaška c. 25, 1000 Ljubljana, Slovenia
Bibliografia
- [1] B. Rong, "6G: The next horizon: From connected people and things to connected intelligence," IEEE Wireless Communications, vol. 28, no. 5, pp. 8-8, 2021.
- [2] G. Wang et al., "Terahertz sensing and communication towards future intelligence connected networks," Communications of Huawei Research, no. 2, pp. 54-79, 2022.
- [3] O. Li et al., "Integrated sensing and communication in 6G a prototype of high resolution THz sensing on portable device," in 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2021, pp. 544-549: IEEE.
- [4] I. F. Akyildiz, C. Han, Z. Hu, S. Nie, and J. M. Jornet, "Terahertz band communication: An old problem revisited and research directions for the next decade," IEEE Transactions on Communications, vol. 70, no. 6, pp. 4250-4285, 2022.
- [5] S. Jia et al., "2× 300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission," Journal of Lightwave Technology, vol. 38, no. 17, pp. 4715-4721, 2020.
- [6] T. Kürner, "Turning THz communications into reality: Status on technology, standardization and regulation," in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2018, pp. 1-3: IEEE.
- [7] "6G Spectrum Expanding the Frontier," 2022: Samsung Research.
- [8] N. A. Abbasi et al., "Ultra-wideband double directional channel measurements for THz communications in urban environments," in ICC 2021-IEEE International Conference on Communications, 2021, pp. 1-6: IEEE.
- [9] "Samsung Unveils 6G Spectrum White Paper and 6G Research Findings," 2022: Samsung.
- [10] "Samsung Electronics and University of California Santa Barbara Demonstrate 6G Terahertz Wireless Communication Prototype," 2021: Samsung.
- [11] S. Abu-Surra et al., "End-to-end 140 GHz wireless link demonstration with fully-digital beamformed system," in 2021 IEEE International Conference on Communications Workshops (ICC Workshops), 2021, pp. 1-6: IEEE.
- [12] S. Abu-Surra et al., "End-to-end 6G terahertz wireless platform with adaptive transmit and receive beamforming," in 2022 IEEE International Conference on Communications Workshops (ICC Workshops), 2022, pp. 897-903: IEEE.
- [13] S. Priebe and T. Kurner, "Stochastic modeling of THz indoor radio channels," IEEE Transactions on Wireless Communications, vol. 12, no. 9, pp. 4445-4455, 2013.
- [14] Y. Chen, Y. Li, C. Han, Z. Yu, and G. Wang, "Channel measurement and ray-tracing-statistical hybrid modeling for low-terahertz indoor communications," IEEE Transactions on Wireless Communications, vol. 20, no. 12, pp. 8163-8176, 2021.
- [15] Z. Niu et al., "The research on 220GHz multicarrier high-speed communication system," China Communications, vol. 17, no. 3, pp. 131-139, 2020.
- [16] S. Ju, Y. Xing, O. Kanhere, and T. S. Rappaport, "Millimeter wave and sub-terahertz spatial statistical channel model for an indoor office building," IEEE Journal on Selected Areas in Communications, vol. 39, no. 6, pp. 1561-1575, 2021.
- [17] D. Serghiou et al., "Ultra-wideband terahertz channel propagation measurements from 500 to 750 GHz," in 2020 International Conference on UK-China Emerging Technologies (UCET), 2020, pp. 1-4: IEEE.
- [18] A. W. Mbugua, W. Fan, K. Olesen, X. Cai, and G. F. Pedersen, "Phase-compensated optical fiber-based ultrawideband channel sounder," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 2, pp. 636-647, 2019.
- [19] Z. Yu, Y. Chen, G. Wang, W. Gao, and C. Han, "Wideband channel measurements and temporal-spatial analysis for terahertz indoor communications," in 2020 IEEE International Conference on Communications Workshops (ICC Workshops), 2020, pp. 1-6: IEEE.
- [20] N. A. Abbasi et al., "Double directional channel measurements for THz communications in an urban environment," in ICC 2020-2020 IEEE international conference on communications (ICC), 2020, pp. 1-6: IEEE.
- [21] S. Kim and A. G. Zajić, "Statistical characterization of 300-GHz propagation on a desktop," IEEE Transactions on Vehicular Technology, vol. 64, no. 8, pp. 3330-3338, 2014.
- [22] S. Kim and A. Zajić, "Characterization of 300-GHz wireless channel on a computer motherboard," IEEE Transactions on Antennas and Propagation, vol. 64, no. 12, pp. 5411-5423, 2016.
- [23] C.-L. Cheng and A. Zajić, "Characterization of propagation phenomena relevant for 300 GHz wireless data center links," IEEE Transactions on Antennas and Propagation, vol. 68, no. 2, pp. 1074-1087, 2019.
- [24] H. Cox, "Spatial correlation in arbitrary noise fields with application to ambient sea noise," The Journal of the Acoustical Society of America, vol. 54, no. 5, pp. 1289-1301, 1973.
- [25] G. R. MacCartney and T. S. Rappaport, "A flexible millimeterwave channel sounder with absolute timing," IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1402- 1418, 2017.
- [26] S. Ju et al., "Scattering mechanisms and modeling for terahertz wireless communications," in ICC 2019-2019 IEEE International Conference on Communications (ICC), 2019, pp. 1-7: IEEE.
- [27] Y. Xing and T. S. Rappaport, "Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz," in 2018 IEEE global communications Conference (GLOBECOM), 2018, pp. 1-6: IEEE.
- [28] Y. Xing and T. S. Rappaport, "Terahertz wireless communications: Co-sharing for terrestrial and satellite systems above 100 GHz," IEEE communications letters, vol. 25, no. 10, pp. 3156-3160, 2021.
- [29] S. Rey, J. M. Eckhardt, B. Peng, K. Guan, and T. Kürner, "Channel sounding techniques for applications in THz communications: A first correlation based channel sounder for ultra-wideband dynamic channel measurements at 300 GHz," in 2017 9th international congress on ultra modern telecommunications and control systems and workshops (ICUMT), 2017, pp. 449-453: IEEE.
- [30] Z. Hossain, C. N. Mollica, J. F. Federici, and J. M. Jornet, "Stochastic interference modeling and experimental validation for pulse-based terahertz communication," IEEE Transactions on Wireless Communications, vol. 18, no. 8, pp. 4103-4115, 2019.
- [31] R. Piesiewicz, C. Jansen, D. Mittleman, T. Kleine-Ostmann, M. Koch, and T. Kurner, "Scattering analysis for the modeling of THz communication systems," IEEE Transactions on Antennas and Propagation, vol. 55, no. 11, pp. 3002-3009, 2007.
- [32] C. Jansen, R. Piesiewicz, D. Mittleman, T. Kurner, and M. Koch, "The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems," IEEE Transactions on Antennas and Propagation, vol. 56, no. 5, pp. 1413-1419, 2008.
- [33] C. Jansen et al., "Diffuse scattering from rough surfaces in THz communication channels," IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 2, pp. 462-472, 2011.
- [34] D. Serghiou, M. Khalily, T. W. Brown, and R. Tafazolli, "Terahertz channel propagation phenomena, measurement techniques and modeling for 6G wireless communication applications: A survey, open challenges and future research directions," IEEE Communications Surveys & Tutorials, vol. 24, no. 4, pp. 1957-1996, 2022.
- [35] "METIS channel models," 2015: Metis Project.
- [36] G. T. 38.901, "Study on channel model for frequencies from 0.5 to 100 GHz," ed: 3GPP Sophia Antipolis, France, 2017.
- [37] M. Series, "Minimum requirements related to technical performance for IMT-2020 radio interface (s)," Report, vol. 2410, pp. 2410-2017, 2017.
- [38] Y. Zhao, Y. Hao, and C. Parini, "FDTD characterization of UWB indoor radio channel including frequency dependent antenna directivities," IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 191-194, 2007.
- [39] Y. Wang, S. Safavi-Naeini, and S. K. Chaudhuri, "A hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation," IEEE Transactions on antennas and propagation, vol. 48, no. 5, pp. 743-754, 2000.
- [40] S. Bakirtzis, T. Hashimoto, and C. D. Sarris, "FDTD-based diffuse scattering and transmission models for ray tracing of millimeter-wave communication systems," IEEE Transactions on Antennas and Propagation, vol. 69, no. 6, pp. 3389-3398, 2020.
- [41] C. Lin and G. Y. Li, "Indoor terahertz communications: How many antenna arrays are needed?," IEEE Transactions on Wireless Communications, vol. 14, no. 6, pp. 3097-3107, 2015.
- [42] S. Priebe, M. Jacob, and T. Kuerner, "AoA, AoD and ToA characteristics of scattered multipath clusters for THz indoor channel modeling," in 17th European Wireless 2011- Sustainable Wireless Technologies, 2011, pp. 1-9: VDE.
- [43] K. Tekbıyık, A. R. Ekti, G. K. Kurt, A. Görçin, and S. Yarkan, "Modeling and analysis of short distance sub-terahertz communication channel via mixture of gamma distribution," IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 2945-2954, 2021.
- [44] B. Peng and T. Kürner, "A stochastic channel model for future wireless THz data centers," in 2015 International Symposium on Wireless Communication Systems (ISWCS), 2015, pp. 741- 745: IEEE.
- [45] A. Fricke, "Channel modelling document (CMD)," in IEEE 802.15 Plenary Meeting, 2016.
- [46] N. Boujnah, S. Ghafoor, and A. Davy, "Modeling and link quality assessment of THz network within data center," in 2019 European Conference on Networks and Communications (EuCNC), 2019, pp. 57-62: IEEE.
- [47] F. Burkhardt, S. Jaeckel, E. Eberlein, and R. Prieto-Cerdeira, "QuaDRiGa: A MIMO channel model for land mobile satellite," in The 8th European Conference on Antennas and Propagation (EuCAP 2014), 2014, pp. 1274-1278: IEEE.
- [48] K. Guan et al., "Measurement, simulation, and characterization of train-to-infrastructure inside-station channel at the terahertz band," IEEE Transactions on Terahertz Science and Technology, vol. 9, no. 3, pp. 291-306, 2019.
- [49] M. Thiel and K. Sarabandi, "A hybrid method for indoor wave propagation modeling," IEEE transactions on antennas and propagation, vol. 56, no. 8, pp. 2703-2709, 2008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4858d2a6-a6c4-4c0f-ae6a-b6592e9a191e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.