PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study on fatigue failure evolution in composite plate monitored by wave propagation method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the elastic wave propagation method is used to observe the initiation and evolution of the fatigue failure form in the multilayered composite plate with an elliptical hole. The experimental tests with the use of active, pitch-catch elastic wave measurement techniques are used during the fatigue test of the composite specimens. The fatigue tests were preceded by the numerical, finite element analysis of the elastic wave propagation phenomenon in a composite plate with an elliptical hole. The sequential measurement related to the number of cycles during the fatigue tests was assumed. The time of flight (ToF) and amplitude change was monitored by piezoelectric sensors localized in the area of predictable failure form evolution. The analysis of the dynamic response of the structure under fatigue loading conditions by a relatively small number of piezoelectric transduces allows us to build cost-effective Structural Health Monitoring (SHM) system for damage detection and monitoring of the failure form evolution.
Rocznik
Strony
art. no. 2020227
Opis fizyczny
Bibliogr. 21 poz., il. (w tym kolor.), rys., wykr.
Twórcy
  • Institute of Machine Design, Cracow University of Technology, al. Jana Pawła II 37, 31-864, Kraków, Poland
autor
  • Institute of Machine Design, Cracow University of Technology, al. Jana Pawła II 37, 31-864, Kraków, Poland
  • Institute of Machine Design, Cracow University of Technology, al. Jana Pawła II 37, 31-864, Kraków, Poland
Bibliografia
  • 1. J.E. Michaels, Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors, Smart Mater. Struct. 17 (2008), 035035.
  • 2. B. Xu, L. Yu, V. Giurgiutiu, Advanced methods for time-of-flight estimation with application to Lamb wave structural health monitoring, Proc. Int. Workshop on SHM 2009 1202-1209.
  • 3. J-B. Ihn, F-K. Chang, Pitch-catch active sensing methods in structural health monitoring for aircraft structures, Struc. Health Monit. 7(5) (2008) 5-19.
  • 4. A. Muc, A. Stawiarski, Location of delaminations in curved laminated panels, Composite Structures 133 (2015) 652-658.
  • 5. A. Stawiarski, A. Muc, P. Kędziora, Damage detection, localization and assessment in multilayered composite structure with delaminations, Advanced Materials in Machine Design, Key Engineering Materials 542 (2013) 193-204.
  • 6. A. Muc, A. Stawiarski, Wave propagation in composite multilayered structures with delaminations, Mechanics of Composite Materials 48(1) (2012) 101-106.
  • 7. X. Liu,C. Zhou, Z. Jiang, Damage localization in plate-like structure using built-in PZT sensor network, Smart Structures and Systems 9(1)(2012) 21-33.
  • 8. W. Ostachowicz, P. Kudela, P. Malinowski, T. Wandowski, Damage localization in plate-like structures based on PZT sensors, Mechanical Systems and Signal Processing, 23(6) (2009) 1805-1829.
  • 9. B. Harris, Fatigue in composites. Science and technology of the fatigue response of fibre-reinforced pastics, Woodhead Publishing Ltd. 2003
  • 10. G.D. Sims, Fatigue test methods, problems and standards, in Fatigue in composites (B. Harris, edt), Woodhead Publishing Ltd, 2003
  • 11. E. Kuhn, E. Valot, P. Herve, A comparison between thermosonics and thermography for delamination detection in polymer matrix laminates, Composite Structures 94, 2012, 1155-1164.
  • 12. M. Barski, P. Kędziora, M. Chwał, Design of rectangular composite plates with circular holes, Composites Theory and Practice 16(1) (2016), 52-57.
  • 13. Stawiarski A., The nondestructive evaluation of the GFRP composite plate with an elliptical hole under fatigue loading conditions, Mechanical Systems and Signal Processing 112 (2018), 31-43
  • 14. L. Toubal, M. Karama, B. Lorrain, Damage evolution and infrared thermography in woven composite laminates under fatigue loading, International Journal of Fatigue 28 (2006) 1867-1872.
  • 15. S.D. Pandita, K. Nishiyabu, I. Verpoest, Strain concentrations in woven fabric composites with holes., Composite Structures 59 (2003), 361-368.
  • 16. O.J. Nixon-Pearson, S.R. Hallett, P.J. Withers, J. Rouse, Damage development in open-hole composite specimens in fatigue. Part 1: Experimental investigation., Composite Structures 106 (2013), 882-889.
  • 17. J.M. Papazian, J. Nardiello, R.P. Silberstein, D. Welsh, D. Grundy, C. Carven et. al., Sensors for monitoring early stage fatigue cracking, Int. J. Fatigue, 29(2007) 1668-1680.
  • 18. B. Masserey, P. Fromme, In-situ monitoring of fatigue crack growth using high frequency guided waves, NDT&E International 71 (2015) 1-7.
  • 19. A. Stawiarski, M. Barski, P. Pająk, Fatigue crack detection and identification by the elastic wave propagation method, Mechanical Systems and Signal Processing 89, 2017,119-130.
  • 20. V. Giurgiutiu, Structural Health Monitoring of Aerospace Composites, Academic Press - Elsevier, 2016
  • 21. T. Peng, Y. Liu, A. Saxena, K. Goebe, In-situ fatigue life prognosis for composite laminates based on stiffness degradation, Composite Structures 132 (2015) 155-165.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-484e64da-ed2d-4e93-b92f-1a7c29182ca9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.