Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The effect of the geodetic precession is the most significant relativistic effect in the rotation of celestial bodies. In this article, the new geodetic precession values for the Sun, the Moon, and the Solar System planets have been improved over the previous version by using more accurate rotational element values. For the first time, the relativistic effect of the geodetic precession for some planetary satellites (J1-J4, S1-S6, S8-S18, U1-U15, N1, and N3-N8) with known quantities of the rotational elements was studied in this research. The calculations of the values of this relativistic effect were carried out by the method for studying any bodies of the Solar System with long-time ephemeris. As a result, the values of the geodetic precession were first determined for the Sun, planets in their rotational elements, and for the planetary satellites in the Euler angles relative to their proper coordinate systems and in their rotational elements. In this study, with respect to the previous version, additional and corrected values of the relativistic influence of Martian satellites (M1 and M2) on Mars were calculated. The largest values of the geodetic rotation of bodies in the Solar System were found in Jovian satellite system. Further, in decreasing order, these values were found in the satellite systems of Saturn, Neptune, Uranus, and Mars, for Mercury, for Venus, for the Moon, for the Earth, for Mars, for Jupiter, for Saturn, for Uranus, for Neptune, and for the Sun. First of all, these are the inner satellites of Jupiter: Metis (J16), Adrastea (J15), Amalthea (J5), and Thebe (J14) and the satellites of Saturn: Pan (S18), Atlas (S15), Prometheus (S16), Pandora (S17), Epimetheus (S11), Janus (S10), and Mimas (S1), whose values of geodetic precession are comparable to the values of their precession. The obtained numerical values for the geodetic precession for the Sun, all the Solar System planets, and their satellites (E1, M1, M2, J1-J5, J14-J16, S1-S6, S8–S18, U1-U15, N1, and N3-N8) can be used to numerically study their rotation in the relativistic approximation and can also be used to estimate the influence of relativistic effects on the orbital-rotational dynamics of bodies of exoplanetary systems.
Rocznik
Tom
Strony
77--109
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Central (Pulkovo) Astronomical Observatory of RAS, St. Petersburg, Russia
autor
- Central (Pulkovo) Astronomical Observatory of RAS, St. Petersburg, Russia
Bibliografia
- Archinal B. A., A’Hearn M. F., Bowell E., Conrad A., Consolmagno G. J., Courtin R., Fukushima T., Hestroffer D., Hilton J. L., Krasinsky G. A., Neumann G., Oberst J., Seidelmann P. K., Stooke P., Tholen D. J., Thomas P. C., Williams I. P. (2011) Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009. Celest Mech Dyn Astr 109, 101-135; (https://doi.org/10.1007/s10569-010-9320-4).
- Archinal B.A., Acton C.H., A’Hearn M.F., Conrad A., Consolmagno G.J., Duxbury T., Hestroffer D., Hilton J. L., Kirk R. L., Klioner S. A., McCarthy D., Meech K., Oberst J., Ping J., Seidelmann P. K., Tholen D. J., Thomas P. C., Williams I. P. (2018) Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015, Celest. Mech. Dyn. Astron., Vol. 130, No. 22, 21-46; (https://doi.org/10.1007/s10569-017-9805-5).
- De Sitter W. (1916) On Einstein's theory of Gravitation and its Astronomical Consequences, Monthly Notices of the Royal Astronomical Society, Vol. 76, No. 9, 699-728; (https://doi.org/10.1093/mnras/76.9.699).
- Eroshkin G.I., Pashkevich V.V. (2007) Geodetic rotation of the Solar system bodies, Artificial Satellites, Vol. 42, No. 1, pp. 59-70; (https://doi.org/10.2478/v10018-007-0017-1).
- Everitt C. W. F., DeBra D. B., Parkinson B. W., Turneaure J. P., Conklin J. W., Heifetz M. I., Keiser G. M, Silbergleit A. S., Holmes T., Kolodziejczak J., Al-Meshari M., Mester J. C., Muhlfelder B., Solomonik V., Stahl K., Worden P., Bencze W., Buchman S., Clarke B., AlJadaan A., Al-Jibreen H., Li J., Lipa J. A., Lockhart J. M., Al-Suwaidan B., Taber M., Wang S. (2011). "Gravity Probe B: Final Results of a Space Experiment to Test General Relativity". Physical Review Letters. 106 (22): 221101.doi:10.1103/PhysRevLett.106.221101.arXiv:1105.3456. Bibcode:2011PhRvL.106v1101E. PMID 21702590. S2CID 11878715.
- Folkner W.F., Williams J.G., Boggs D.H., Park R.S., and Kuchynka P. (2014) The Planetary and Lunar Ephemerides DE430 and DE431, IPN Progress Report 42-196, February 15, 2014.
- Giorgini J.D., Yeomans D.K., Chamberlin A.B., Chodas P.W., Jacobson R.A., Keesey M.S., Lieske J.H., Ostro S.J., Standish E.M., Wimberly R.N. (1996) "JPL's On-Line Solar System Data Service", Bulletin of the American Astronomical Society, Vol. 28, No. 3, 1158.
- Klioner S.A., Gerlach E., and Soffel M.H. (2009) “Relativistic aspects of rotational motion of celestial bodies”, Proceedings IAU Symposium No. 261, 2009, 112-123; (https://doi.org/10.1017/S174392130999024X).
- Ma C., Arias E.F., Eubanks T.M., Fey A.L., Gontier A.-M., Jacobs C.S., Sovers O.J., Archinal B.A., Charlot P. (1998) The international celestial reference frame as realized by very long baseline interferometry, Astron. J., Vol. 116, No. 1, 516-546; (https://doi.org/10.1086/300408).
- Pashkevich V.V. (2016) New high-precision values of the geodetic rotation of the major planets, Pluto, the Moon and the Sun, Artificial Satellites, Journal of Planetary Geodesy, Vol. 51, No. 2, 61-73; (https://doi.org/10.1515/arsa-2016-0006).
- Pashkevich V.V., Vershkov A.N. (2019) New High-Precision Values of the Geodetic Rotation of the Mars Satellites System, Major Planets, Pluto, the Moon and the Sun, Artificial Satellites, Journal of Planetary Geodesy, Vol. 54, No. 2, 31-42; (https://doi.org/10.2478/arsa-2019-0004).
- Pashkevich V.V., Vershkov A.N. (2020) Relativistic effects in the rotation of Jupiter’s inner satellites, Artificial Satellites, Journal of Planetary Geodesy, Vol. 55, No. 3, 118-129; (https://doi.org/10.2478/arsa-2020-0009).
- Seidelmann P.K., Archinal B.A., A'Hearn M.F., Cruikshank D.P., Hilton J.L., Keller H.U., Oberst J., Simon J.L., Stooke P., Tholen D.J., and Thomas P.C. (2005) Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements: 2003, Celestial Mechanics and Dynamical Astronomy, 91, 203-215; (https://doi.org/10.1007/s10569-004-3115-4).
- Standish, E., Newhall, X. (1996). New accuracy levels for solar system ephemerides. Symposium - International Astronomical Union, 172, 29-36. (https://doi.org/10.1017/S0074180900127081).
- Suslov G.K. (1946): Theoretical mechanics. OGIZ, Moscow, (in Russian).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-484d9087-1a24-44ae-ae50-f4782e5305bf