PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of the power parameters of a line start permanent magnet synchronous motor using professional FEM packages and in-house software

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses the methods for calculating the power parameters of a line start permanent magnet synchronous motor (LSPMSM). The calculations have been performed using the author’s specialized FEM software and professional FEM packages, ANSYS Maxwell and COMSOL Multiphysics. The author’s algorithm for solving equations of the electromagnetic field based on the FEM has been presented. The in-house software developed on this algorithm and professional software have been used to analyse the power parameters of the LSPMS motor. In addition, both calculation time and accuracy were analysed. The calculation results were compared to the measurement results.
Rocznik
Strony
585--596
Opis fizyczny
Bibliogr. 30 poz., fig., tab., wykr., wz.
Twórcy
  • Institute of Electrical Engineering and Electronics, Faculty of Control, Robotics and Electrical Engineering. Poznan University of Technology Piotrowo 3A, 60-965 Poznan
Bibliografia
  • [1] de Almeida A.T., Ferreira F.J.T.E., Fong J., Perspectives on Electric Motor Market Transformation for a Net Zero Carbon Economy, Energies, vol. 16, no. 3, 1248 (2023), DOI: 10.3390/en16031248.
  • [2] Fei W., Luk P.C.K., Ma J., Shen J.X., Yang G., A High-Performance Line-Start Permanent Magnet Synchronous Motor Amended From a Small Industrial Three-Phase Induction Motor, IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4724–4727 (2009), DOI: 10.1109/TMAG.2009.2022179.
  • [3] Baranski M., Szelag W., Lyskawinski W., An analysis of a start-up process in LSPMSMs with aluminum and copper rotor bars considering the coupling of electromagnetic and thermal phenomena, Archives of Electrical Engineering, vol. 68, no. 4, pp. 933–946 (2019), DOI: 10.24425/aee.2019.130693.
  • [4] Baka S., Sashidhar S., Fernandes B.G., Design of an Energy Efficient Line-Start Two-Pole Ferrite Assisted Synchronous Reluctance Motor for Water Pumps, IEEE Transactions on Energy Conversion, vol. 36, no. 2, pp. 961-970 (2021), DOI: 10.1109/TEC.2020.3029110.
  • [5] Kurihara K., Rahman M.A., High-efficiency line-start interior permanent-magnet synchronous motors, IEEE Transactions on Industry Applications, vol. 40, no. 3, pp. 789–796 (2004), DOI: 10.1109/TIA.2004.827476.
  • [6] Ugale R.T., Chaudhari B.N., Rotor Configurations for Improved Starting and Synchronous Performance of Line Start Permanent-Magnet Synchronous Motor, IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 138–148 (2017), DOI: 10.1109/TIE.2016.2606587.
  • [7] Wymeersch B., De Belie F., Rasmussen C.B., Vandevelde L., Classification Method to Define Synchronization Capability Limits of Line-Start Permanent-Magnet Motor Using Mesh-Based Magnetic Equivalent Circuit Computation Results, Energies, vol. 11, no. 4 (2018), DOI: 10.3390/en11040998.
  • [8] Jun S.-B., Kim C.-H., Cha J., Lee J.H., Kim Y.-J., Jung S.-Y., A Novel Method for Establishing an Efficiency Map of IPMSMs for EV Propulsion Based on the Finite-Element Method and a Neural Network, Electronics, vol. 10, no. 9, 1049 (2021), DOI: 10.3390/electronics10091049.
  • [9] Aishwarya M., Brisilla R.M., Design of Energy-Efficient Induction motor using ANSYS software, Results in Engineering, vol. 16, 100616 (2022), DOI: 10.1016/j.rineng.2022.100616.
  • [10] Gecer B., Tosun O., Apaydin H., Oyman Serteller N.F., Comparative Analysis of SRM, BLDC and Induction Motor Using ANSYS/Maxwell, 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pp. 1–6 (2021), DOI: 10.1109/ICECCME52200.2021.9591010.
  • [11] Varvolik V., Prystupa D., Buticchi G., Peresada S., Galea M., Bozhko S., Co-Simulation Analysis for Performance Prediction of Synchronous Reluctance Drives, Electronics, vol. 10, no. 17, 2154 (2021), DOI: 10.3390/electronics10172154.
  • [12] Dobzhanskyi O., Grebenikov V., Gouws R., Gamaliia R., Hossain E., Comparative Thermal and Demagnetization Analysis of the PM Machines with Neodymium and Ferrite Magnets, Energies, vol. 15, no. 12, 4484 (2022), DOI: 10.3390/en15124484.
  • [13] Falkowski K., Kurnyta-Mazurek P., Szolc T., Henzel M., Radial Magnetic Bearings for Rotor–Shaft Support in Electric Jet Engine, Energies, vol. 15, no. 9, 3339 (2022), DOI: 10.3390/en15093339.
  • [14] Su Z., Luo L., Liu J., Li Z., Luo H., Bai H., Research on Vibration and Noise of Induction Motor under Variable Frequency, Symmetry, vol. 14, no. 3, 569 (2022), DOI: 10.3390/sym14030569.
  • [15] Lukaniszyn M., Wrobel R., A study on the influence of permanent magnet dimensions and stator core structures on the torque of the disc-type brushless DC motor, Electrical Engineering, vol. 82, no. 3, pp. 163–171 (2000), DOI: 10.1007/s002020050007.
  • [16] Dems M., Komeza K., Szulakowski J., Kubiak W., Increase the Efficiency of an Induction Motor Feed from Inverter for Low Frequencies by Combining Design and Control Improvements, Energies, vol. 15, no. 2, 530 (2022), DOI: 10.3390/en15020530.
  • [17] Uberti F., Frosini L., Szabó L., A New Design Procedure for Rotor Laminations of Synchronous Reluctance Machines with Fluid Shaped Barriers, Electronics, vol. 11, no. 1 (2022), DOI: 10.3390/electronics11010134.
  • [18] Codrean M., Simina C., Popa M., Leuca T., Giurgiu N.C., Modelling the Process of Induction Heating in Volume of a Bar Strip Using Flux 2D Software, coupled with Minitab Experimental Design Software, Journal of Electrical and Electronics Engineering, vol. 9, no. 1, pp. 5–8 (2016).
  • [19] Hernández J.A.D., Carralero N.D., Vázquez E.G., A 3-D Simulation of a Single-Sided Linear Induction Motor with Transverse and Longitudinal Magnetic Flux, Applied Sciences, vol. 10, no. 19, 7004 (2020), DOI: 10.3390/app10197004.
  • [20] Islam M.S., Agoro S., Chattopadhyay R., Husain I., Heavy Rare Earth Free High Power Density Traction Machine for Electric Vehicles, 2021 IEEE International Electric Machines and Drives Conference (IEMDC), pp. 1–8 (2021), DOI: 10.1109/IEMDC47953.2021.9449585.
  • [21] Mishra R., Behera B.K., Muller M., Petru M., Finite element modeling based thermodynamic simulation of aerogel embedded nonwoven thermal insulation material, International Journal of Thermal Sciences, vol. 164, 106898 (2021), DOI: 10.1016/j.ijthermalsci.2021.106898.
  • [22] Coteţ F.-A., Văscan I., Szabó L., On the Usefulness of Employing ANSYS Motor-CAD Software in Designing Permanent Magnet Synchronous Machines, Designs, vol. 7, no. 1 (2023), DOI: 10.3390/designs7010007.
  • [23] Salvi D., Boldor D., Ortego J., Aita G.M., Sabliov C.M., Numerical Modeling of Continuous Flow Microwave Heating: A Critical Comparison of COMSOL and ANSYS, Journal of Microwave Power and Electromagnetic Energy, vol. 44, no. 4, pp. 187–197 (2010), DOI: 10.1080/08327823.2010.11689787.
  • [24] Abdelqader M., Morelli J., Palka R., Woronowicz K., 2-D quasi-static solution of a coil in relative motion to a conducting plate, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 36, no. 4, pp. 980–990 (2017), DOI: 10.1108/COMPEL07-2016-0312.
  • [25] Wang Y., Song W., Yazdani-Asrami M., Fang J., A Fast Numerical Modeling Approach Based on Boundary Field Method for Calculating AC Losses in Superconducting Motors, IEEE Transactions on Applied Superconductivity, vol. 33, no. 3, pp. 1–6 (2023), DOI: 10.1109/TASC.2023.3245039.
  • [26] Baranski M., Demenko A., Lyskawinski W., Szelag W., Finite element analysis of transientelectromagnetic-thermal phenomena in a squirrel cage motor, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 30, no. 3, pp. 832–840 (2011), DOI: 10.1108/03321641111110807.
  • [27] https://www.ansys.com, accessed March 2023.596 M. Baranski Arch. Elect. Eng.
  • [28] https://www.comsol.com, accessed March 2023.
  • [29] Baranski M., Szelag W., Lyskawinski W., Experimental and Simulation Studies of Partial Demagnetization Process of Permanent Magnets in Electric Motors, IEEE Transactions on Energy Conversion,vol. 36, no. 4, pp. 3137–3145 (2021), DOI: 10.1109/TEC.2021.3082903.
  • [30] Baranski M., Szelag W., Lyskawinski W., Analysis of the Partial Demagnetization Process of Magnets in a Line Start Permanent Magnet Synchronous Motor, Energies, vol. 13, no. 21, pp. 5562 (2020),DOI: 10.3390/en13215562.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-484c4e86-2d72-4df5-ab3e-5e17c1fbe945
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.