PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic simulation for wastewater treatment plants management: Case of Souk-Ahras region, north-eastern Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Dynamiczna symulacja zarządzania oczyszczalniami ścieków: przykład regionu Souk-Ahras w północno-wschodniej Algierii
Języki publikacji
EN
Abstrakty
EN
Treatment performances of two wastewater treatment plants (WWTPs), located in North-Eastern Algeria (Souk-Ahras and Sedrata) were tested using ASM1 model. The model, to be considered as a decision tool for the appropriate management of activated sludge systems, served for the prediction of both WWTP behaviours under different operating conditions. In Sedrata WWTP the first management scenarios is based on an increase of inflow rate, taking into account a new transfer volume from a nearby zone. In a second scenerio, the ultimate flow of 40 000 m3∙d–1 is estimated. Regarding Souk-Ahras WWTP, three scenarios were tested. The first tested the impact of an increase of the extraction flow rate and yielded a reduction by 37% of sludge production. The second dealt with the management of the mass budget of substrata and biomass. Finally, the third application was devoted to the estimation of the plant ultimate capacity, estimated to be 60 000 m3∙d–1.
PL
Stosując model ASM1, testowano działanie dwóch oczyszczalni ścieków zlokalizowanych w północnowschodniej Algierii w miejscowościach Souk-Ahras i Sedrata. Model, traktowany jako narzędzie w podejmowaniu decyzji co do właściwego zarządzania systemem osadu czynnego, służył przewidywaniu zachowania się obu oczyszczalni w różnych warunkach operacyjnych. W oczyszczalni Sedrata w pierwszym scenariuszu zarządzania założono zwiększoną prędkość przepływu uwzględniającą dodatkową objętość ścieków dostarczaną z pobliskiej strefy. W drugim oszacowano końcową przepustowość równą 40 000 m3∙d–1. W odniesieniu do oczyszczalni w Souk-Ahras testowano trzy scenariusze. W pierwszym rozpatrywano wpływ zwiększonej prędkości przepływu, w efekcie uzyskano 37-procentowe zmniejszenie produkcji osadu. Drugi scenariusz dotyczył zarządzania bilansem masy podłoża i biomasy. Trzeci z kolej polegał na ocenie docelowej przepustowości ścieków szacowanej na 60 000 m3∙d–1.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
221--231
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Badji Mokhtar Annaba University; Department of Hydraulic, P.O. Box 12, 23000 Annaba, Algeria
autor
  • Mohamed-Cherif Messaadia University – Souk-Ahras, InfraRes Laboratory, Souk Ahras, Algeria
autor
  • Badji Mokhtar Annaba University; Department of Hydraulic, P.O. Box 12, 23000 Annaba, Algeria
autor
  • Mohamed-Cherif Messaadia University – Souk-Ahras, InfraRes Laboratory, Souk Ahras, Algeria
Bibliografia
  • ARAUJO A.C., GALLANI S., MULAS M., SKOGESTAD S. 2013. Sensitivity analysis of optimal operation of an activated sludge process model for economic controlled variable selection. Industrial and Engineering Chemistry Research. Vol. 52. Iss. 29 p. 9908–9921.
  • BAHGAT L.M. 2000. A knowledge-based decision support system for an activated sludge wastewater treatment plant. MSc thesis. Department of Information Technology, Institute of Graduate Studies and Research, Alexandria University, Egypt pp. 186.
  • BARNETT M.W., TAKACS I., STEPHENSON J., GALL B., PERDEUS M. 1995. Dynamic modeling: New simulation tools provide insight into waste-water treatment plant design and operations. Water Environment and Technology. Vol. 7. Iss. 12 p. 41–44.
  • CHACHUAT B., ROCHE N., LATIFI M.A. 2000. Identification et optimisation dynamique d’une station d’épuration de petite taille [Identification and dynamic optimization of a small-sized WWTP]. Report concerning the collaboration on the technical exchanges in modeling of WWTP. Paris, France. Vivendi Water pp. 144.
  • CHOUBERT J.M. 2002. Analyse et optimisation du traitement de l’azote par des boues activées à basse température [Analysis and optimization of the treatment of the nitrogen by low-temperature activated sludge]. PhD thesis in Process engineering. Strasbourg, France University of Strasbourg pp. 265.
  • EKAMA G.A., BARNARD J.L. GUENTHERT F.W., KREBS P., MCCORQUODALE J.A., PARKER D.S., WAHLBERG E.J. 1997. Secondary settling tanks: Theory, modeling, design and operation. Scientific and Technical Report. No. 6. International Association on Water Quality. London p. 187–203.
  • ELSHORBAGY W.E., SHAWAQFAH M. 2015. Development of an ASM1 dynamic simulation model for an activated sludge process in United Arab Emirates. Desalination and Water Treatment. Vol. 54. Iss. 1 p. 15–27.
  • GE H., BATSTONE D.J., KELLER J. 2013. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion. Water Research. Vol. 47. Iss. 17 p. 6546–6557.
  • GUERRERO J., GUISASOLA A., COMAS J., RODRÍGUEZ-RODA I., BAEZA J.A. 2012. Multi-criteria selection of optimum WWTP control set points based on microbiology-related failures, effluent quality and operating costs. Chemical Engineering Journal. Vol. 188 p. 23–29.
  • GUJER W., HENZE M. 1991. Activated sludge modelling and simulation. Proceedings of the 15th Biennial Conference of the International Association on Water Pollution Research and Control. July 29, 1990 – August 3, 1990, Kyoto, Japan p. 1011–1023.
  • GUJER W., HENZE M., MINO T., VAN LOOSDRECHT M. 1999. Activated sludge model no. 3. Water Science and Technology. Vol. 39. Iss. 1 p. 183–193.
  • HAKANEN J., MIETTINEN K., SAHLSTEDT K. 2011. Wastewater treatment: New insight provided by interactive multi objective optimization. Decision Support Systems. Vol. 51. Iss. 2 p. 328–337.
  • HAKANEN J., SAHLSTEDT K., MIETTINEN K. 2013. Wastewater treatment plant design and operation under multiple conflicting objective functions. Environmental Modelling and Software. Vol. 46 p. 240–249.
  • HAN H.G., QIAO J.F. 2012. Prediction of activated sludge bulking based on a self-organizing RBF neural network. Journal of Process Control. Vol. 22. Iss. 6 p. 1103–1112.
  • HENZE M., GRADY JR C.P.L., GUJER W., MARAIS G.V.R., MATSUO T. 1987. Activated sludge model no. 1: IAWPRC Scientific and Technical Report No. 1. IAWPRC, London.
  • HENZE M., GUJER W., MINO T., MATSUO T., WENTZEL M.C., VR MARAIS G., VAN LOOSDRECHT M.C. 1999. Activated sludge model no. 2d, ASM2d. Water Science and Technology. Vol. 39. Iss. 1 p. 165–182.
  • HENZE M., GUJER W., MINO T., VAN LOOSDRECHT M.C.M. 2000. Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA publishing.
  • HUANG P., GOEL R. 2015. Response of a sludge-minimizing lab-scale BNR reactor when the operation is changed to real primary effluent from synthetic wastewater. Water Research. Vol. 81 p. 301–310.
  • Hydromantis, Inc. 2006. GPS-X 5.0 – User’s guide and Technical Reference. Hamilton, Ontario (Canada).
  • INSEL G., GÜDER B., GÜNEŞ G., UBAYCOKGOR E. 2012. Are standard wastewater treatment plant design methods suitable for any municipal wastewater? Water Science and Technology. Vol. 66. Iss. 2 p. 328–335.
  • JENKINS D., WANNER J. (ed.) 2014. Activated sludge – 100 years and counting. London. IWA Publ. ISBN 9781780404943 pp. 464.
  • JEPPSSON U. 1996. Modeling aspects of wastewater treatment processes. PhD thesis. Department of Industrial Electrical Engineering and Automation, Lund Institute of Technology, Sweden pp. 189.
  • JEPPSSON U., ALEX J., BATSTONE D. J., BENEDETTI L., COMAS J., COPP J.B., COROMINAS L., FLORES-ALSINA X., GERNAEY K.V., NOPENS I., PONS M.N., RODRÍGUEZ-RODA I., ROSEN C., STEYER J.P., VANROLLEGHEM P.A., VOLCKE E.I., VRECKO D. 2013. Benchmark simulation models, quo vadis? Water Science and Technology. Vol. 68. Iss. 1 p. 1–15.
  • KATIPOGLU-YAZAN T., UBAYCOKGOR E., ORHON D. 2015. Modeling sequential ammonia oxidation kinetics in enriched nitrifying microbial culture. Journal of Chemical Technology and Biotechnology. Vol. 90. Iss. 1 p. 72–79.
  • LIWARSKA-BIZUKOJC E., BIERNACKI R. 2010. Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software. Bioresource Technology. Vol. 101. Iss. 19 p. 7278–7285.
  • NGUYEN D.H., LATIFI M.A., LESAGE F., MULHOLLAND M. 2013. Dynamic simulation and optimization of wastewater treatment plants. International Conference on Process Control, PC. 18–21 June 2013. Štrbské Pleso, Slovakia p. 407–414.
  • PETERSEN B. 2000. Calibration, identifiability and optimal experimental design of activated sludge models. PhD. Thesis. Ghent University, Belgium pp. 252.
  • PETERSEN E.E. 1965. Chemical reaction analysis. Upper Saddle River, New Jersey. Prentice Hall pp. 276.
  • POWER M. 1993. The predictive validation of ecological and environmental models. Ecological Modelling. Vol. 68. Iss. 1 p. 33–50.
  • RIEGER L., GILLOT S., LANGERGRABER G., OHTSUKI T., SHAW A., TAK I., WINKLER S. 2012. Guidelines for using activated sludge models. London. IWA Publ. ISBN 9781780401164 pp. 312.
  • SIEGRIST H., TSCHUI M. 1992. Interpretation of experimental data with regard to the activated sludge model no. 1 and calibration of the model for municipal wastewater treatment plants. Water Science and Technology. Vol. 25. Iss. 6 p. 167–183.
  • SIN G., VANROLLEGHEM P.A. 2007. Extensions to modeling aerobic carbon degradation using combined respirometric–titrimetric measurements in view of activated sludge model calibration. Water Research. Vol. 41. Iss. 15 p. 3345–3358.
  • SOROUR M.T., BAHGAT L.M. 2004. Application of activated sludge models in traditionally operated treatment plants – a software environment overview. Water Quality Research Journal of Canada. Vol. 39. Iss. 3 p. 294–302.
  • SPANJERS H., VANROLLEGHEM P., OLSSON G., DOLDT P. 1996. Respirometry in control of the activated sludge process. Water Science and Technology. Vol. 34. Iss. 3 p. 117–126.
  • STRICKER A. 2000. Application of modeling to study nitrogen removal in the activated sludge process operated at very low F/M ratio: A comparison of dry and wet weather performance. PhD thesis in Process engineering. Strasbourg, France. University of Strasbourg pp. 308.
  • TAKÁCS I., PATRY G.G., NOLASCO D. 1991. A dynamic model of the clarification-thickening process. Water Research. Vol. 25. Iss. 10 p. 1263–1271.
  • VANROLLEGHEM P., FLORES-ALSINA X., GUO L., SOLON K., IKUMI D., BATSTONE D., JEPPSSON U. 2014. Towards BSM2-GPS-X: A plant-wide benchmark simulation model not only for carbon and nitrogen, but also for greenhouse gases (G), phosphorus (P), sulphur (S) and micropollutants (X), all within the fence of WWTPs/ WRRFs. Proceedings 4th IWA/WEF Wastewater Treatment Modelling Seminar (WWTmod2014). 30.03–02.04.2014. Spa, Belgium p. 123–128.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-484aa316-cbbd-4183-9986-0c76a1322897
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.