PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of hydroxyapatite-titanium composite properties during heat treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A biocompatible hydroxyapatite (HA) coating with a thickness of about 18–20 microns was successfully deposited by radiofrequency (RF) magnetron sputtering on titanium substrates VT1-0. The data obtained for the optimal composition and structure of hydroxyapatite can be used to create coating which will interact with a titanium substrate. Using the methods of optical and SEM, AFM, electron microprobe, FTIR and X-ray analysis, surface morphology, phase and elemental composition, structure of hydroxyapatite (HA) coatings were studied. Structural and phase transformations after heat treatment using X-ray diffraction and microscopic methods of analysis were studied. It was found that after annealing coating phase analysis showed the presence of not only hydroxyapatite (Ca5(PO4)3OH), but also compounds of tricalcium phosphate (Ca3(PO4)2) and titanium oxide. Adhesivetribological durability, friction and deformation characteristics of hydroxyapatite coating on titanium substrate were determined. The obtained coatings had high hardness, wear resistance and adhesion to the substrate and low modulus of elasticity and coefficient of friction.
Rocznik
Strony
161--169
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Metallurgy and Ore Benefication, Joint-stock company, Almaty, Republic of Kazakhstan
  • Institute of Metallurgy and Ore Benefication, Joint-stock company, Almaty, Republic of Kazakhstan
  • Institute of Combustion Problems, Almaty, Republic of Kazakhstan
  • Kazakh National Research Technical University, Almaty, Republic of Kazakhstan
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
autor
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
  • [1] ANIOLEK K., KUPKA M., BARYLSKI A., Sliding wear resistance of oxide layers formed on a titanium surface during thermal oxidation, J. Wear, 2016, 356–357, 23–27.
  • [2] ARIFIN A., SULONG A.B., MUHAMAD N., SYARIF J., Characterization of hydroxyapatite/Ti6Al4V composite powder under various sintering temperature, Teknologi, 2015, 75(7), http://dx.doi.org/10.11113/jt.v75.5168.
  • [3] BANASZEK K., WIKTOROWSKA-OWCZAREK A., KOWALCZYK E., KLIMEK L., Possibilities of applying Ti (C, N) coatings on prosthetic elements – research with the use of human endothelial cells, Acta of Bioengineering and Biomechanics, 2016, 18(1), 129–136.
  • [4] JANICKI, T., SOBCZAK-KUPIEC, A., SKOMRO, P., WZOREK, Z., Surface of root cementum following air-polishing with bioactive hydroxyapatite (Ca and P mapping). A pilot study, Acta Bioeng. Biomech., 2012, 14.1, 31–8.
  • [5] KATTO M., ISHIBASHI K., KUROSAWA K., YOKOTANI A., KUBODERA S., KAMEYAMA A., HIGASHIGUCHI T., NAKAYAMA T., KATAYAMA H., TSUKAMOTO M., ABE N., Crystallized hydroxyapatite coatings deposited by PLD with targets of different densities, J. Journal of Physics, 2007, 59, 75–78.
  • [6] KIEL-JAMROZIK M., SZEWCZENKO J., BASIAGA M., NOWIŃSKA K., Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy, Acta Bioeng. Biomech., 2015, 17(1), 31–37.
  • [7] KOT M., KOBIELARZ M., MAKSYMOWICZ K., Assessment of mechanical properties of arterial calcium deposition, J. Transactions of FAMENA, 2011, 35(3), 49–56.
  • [8] LEE H.J., KWON T.Y., KIM K.H., KANG S.S., CHOI S.H., KWON S.T., CHO D.H., SON J.S., In vitro evaluation of hydroxyapatite-coated titanium implant with atmospheric plasma treatment, J. Journal of Nanoscience and Nanotechnology, 2015, 15(8), 5593–5596.
  • [9] LEYENS C., PETERS M., Titanium and Titanium alloys, Wiley-VCH Verlag GmbH & co., KGaA, 2003.
  • [10] MOHSENI E., ZALNEZHAD E., BUSHROA A.R., HAMOUDA A.M., GOH B.T., YOON G.H., Ti/TiN/Ha coating on Ti–6Al–4V for biomedical applications, J. Ceramics International, 2015, 41(10), 14447–14457.
  • [11] MAHE M., HEINTZ J., RODEL J., REYNDERS P., Cracking of titania nanocrystalline coatings, J. Journal of the European Ceramic Society, 2008, 28, 2003–2010.
  • [12] PATRIK K., JAN M., The procedure of evaluating the practical adhesion strength of new biocompatible nano- and microthin films in accordance with international standards, Acta Bioeng. Biomech., 2011, 13(3), 87–94.
  • [13] SANPO N., THARAJAK J., Biocompatibility of cold sprayed silverdoped hydroxyapatite/titanium coatings, J. Applied Mechanics and Materials, 2016, 848, 19–22.
  • [14] SOBCZAK A., KOWALSKI Z., WZOREK Z., Preparation of hydroxyapatite from animal bones, Acta Bioeng. Biomech., 2009, 11.4, 23–28.
  • [15] SOKOŁOWSKI G., RYLSKA D., SOKOŁOWSKI J., The effect of heat treatment simulating porcelain firing processes on titanium corrosion resistance, Acta Bioeng. Biomech., 2016, 18(2), 93–102.
  • [16] SUN L., BERNDT C.C., GROSS K.A., KUCUK A., Material fundamentals and clinical performance of plasma sprayed hydroxyapatite coatings, J. Biom. Mater. Res., 2001, 58, 570–592.
  • [17] TAO N.R., LU J., LU K., Surface nanocrystallization by surface mechanical attrition treatment, J. Materials Science Forum, 2008, 579, 91–108.
  • [18] TOMANIK M., NIKODEM A., FILIPIAK J., Microhardness of human cancellous bone tissue in progressive hip osteoarthritis, Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 86–93.
  • [19] WEN J., LI Y., ZUO Y. et al., Preparation and characterization of nano-hydroxyapatite/silicone rubber composite, J. Mater. Lett., 2008, 62, 3307–3309.
  • [20] WOJAK I., SCHARNWEBER D., PAMUŁA E., Resorbable scaffolds modified with collagen type I or hydroxyapatite: in vitro studies on human mesenchymal stem cells, Acta Bioeng. Biomech., 2013, 15.1, 61–67.
  • [21] YODER C. H., FEDORS N., FLORA N. J., BROWN H., HAMILTON K., SCHAEFFER C.D., Synthesis and reactivity in inorganic and metal-organic chemistry, J. The Existence of Pure-Phase Transition Metal Hydroxyl Apatites, 2004, 34, 1835–1842.
  • [22] ZHAOA G., XIAA L., WENA G., SONGA L., WANGA X., WUB K., Microstructure and properties of plasma-sprayed biocoatings on a low-modulus titanium alloy from milled Ha/Ti powders, J. Surface and Coatings Technology, 2012, 206(23), 4711–4719.
  • [23] ZASIŃSKA K., PIĄTKOWSKA A., Ocena zużycia ściernego stopu Ti13Nb13Zr implantowanego jonami azotu, przeznaczonego na element trące w endoprotezach ortopedycznych, J. Tribologia: Tarcie, Zużycie, Smarowanie, 2015, 6, 175–186.
  • [24] ZEMTSOVA E.G., OREHOV E.V., ARBENIN A.Y. et al., Creating nanocoating different morphology titanium dioxide on titanium matrix for bone implant, J. Materials Physics and Mechanics, 2016, 29, 138–144.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-484899ce-efe4-46eb-bc28-f89f359514af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.