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AUXILIARY AND RAO-BLACKWELLISED PARTICLE 

FILTERS COMPARISON 
 
 

Particle filters are very popular – number of algorithms based on Sequential Monte 

Carlo methods is growing. Paper describes and compares the performance of two of them 

– Auxiliary and Rao-Blackwellised Particle Filters. Comparison includes also Bootstrap 

Filter and some variety of SIR algorithm. 

 

1. INTRODUCTION 
 

 Particle filters (PF) are recently being used in many different problems, for example 
filtering (hidden variables tracking) [7], system identification [15], object tracking [4] or 

robot localization problem [17, 18]. Article focuses on the filtration problem.  

PF popularity still increase, which is associated with technology development 
(algorithms requires high performance computing [16]) and with particle filter 

principle of operation – possibility of the parallel computing implementation 

which can reduce the computation time even by a few orders of magnitude [13]. 
In the 2nd chapter describes the principle of operation of particle filter and its 

specific case – Bootstrap Filter. In chapter 3 Auxiliary PF is described, and  

Rao-Blackwellised PF is described in chapter 4. Simulation results are presented 

in chapter 5. 
 

2. PARTICLE FILTER 
 

 PF is based on Bayesian Filtering 

 ( ) ( ) ( )
( )1kk

1kkkk

kk
Yyp

Yxpxyp
Yxp

−

−=  (1) 

whose aim is estimation of probability density function (PDF) ( )kk Yxp  (posterior), 

therefore density of state variable 
kx  at time step k  based on measurements 

kY . It is 

assumed that 

 }y,...,y,y{Y k21k =  (2) 
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 PF is one of the possible Bayesian filter implementations, in which estimated 

posterior PDF is not continuous, but composed of a set of N  samples, called particles 

[3], where each has a certain value and weight { }i

k

i

k w,x  (for N,...,1i = ) – see Fig. 1. The 

higher the weight i

kw , the greater chance of value i

kx  appearance. 
 

 
Fig. 1. Posterior PDF composed of particles 

 

2.1. SIR algorithm 

 
 Bayesian filter (1) can be presented in the recursive form 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1k1k1kkkk

1kk

1k1k1kkkk

kk yxpxxpxyp
Yyp

yxpxxpxyp
Yxp −−−

−

−−− ∝=  (3) 

where sign “∝ ” means “proportional to”. ( )kk Yxp  is the normalizing constant given 

by [1] 

 ( ) ( ) ( )∫ −− = k1kkkk1kk dxYxpxypYyp  (4) 

From formula (3) one can see, that posterior can be calculating using the 
distribution of particles in the previous step. 

The SIR (Sequential Importance Resampling) principle of operation is shown 

in Algorithm 1. 

Algorithm 1 

1. Draw N  particles from initial PDF ( )0

i

0 xp~x ; set the initial weights 
N
1i

0q =  and 

step 1k = . 

2. Draw N particles from importance density ( )k

i

1kk

i

k y,xxg~x −
. 

3. Compute weights values 
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 where ( )i

kk xyp  is the likelihood available from the measurement model, whereas 

( )i

1k

i

k xxp −
 is given by transition model. 

4. Weights normalization 

 

∑
=

=
N

1j

j

k

i

ki

k

q~

q~
q  (6) 

5. Check the condition for resampling; if it is not met, go to step 7. 
6. Resampling (see Section 2.3). 

7. Increase time step 1kk += ; go to step 2. 

Importance density, which is used in Algorithm 1, is any PDF proposed by 

programmer. It can depend on the previous value of state variable and on the 
current measure value, but it can also be completely independent (but this will 

negatively affect the performance of the method). 
 

2.2. Bootstrap Filter 
 

 Bootstrap Filter, proposed in 1993 by Gordon, Salmond and Smith [9] is 
particular case of SIR. They proposed that the draw should be from transition 

model 

 ( ) ( )i

1kkk

i

1kk xxpy,xxg −− =  (7) 

Hence the equation (5) simplifies to 

 ( )i

kk

i

1k

i

k xypqq~ ⋅∝ −
 (8) 

 The second change to the standard SIR is abandonment of 5th algorithm step 

and the assumption that resampling will be done in every time. After resampling 

all weights have the same value 
N
1i

1kq =− , therefore one can simplify expression (8) to 

 ( )i

kk

i

k xypq~ ∝  (9) 

 Bootstrap Filter principle of operation is presented below. 

Algorithm 2 

1. Draw N  particles from initial PDF ( )0

i

0 xp~x ; set initial weights 
N
1i

0q =  and step 

1k = . 

2. Draw N particles from importance density ( )i

1kk

i

k xxp~x −
. 

3. Compute weights according to formula (9). 

4. Weights normalization according to (6). 

5. Resampling. 

6. Increase the time step 1kk += ; go to step 2. 
 



Piotr Kozierski, Marcin Lis 

 

 

82 

2.3. Resampling and its execution condition 
 

 Resampling consist in drawing N new samples from PDF consisting of 

particles (their values and weights). 

 It is important that draw is only from values of individual particles (draw from 

discrete PDF), and the probability for i-th value selection is equal to i

kq . 

 After resampling all weights are set to the same value 
N
1i

kq = . 

 There are few different resampling methods, but the fastest is Systematic 

Resampling. It consist that after creation of the discrete distribution, the whole 

range from which it will be draw is divided into N equal ranges. From each range 
is drawn strictly one value.  

 The resampling steps are written in algorithm below. 
 

Algorytm 3 
 

1. Create discrete cumulative distribution function (CDF) based on particle 

weights. 

2. For N,...,1j =  execute steps 3-5. 

3. Draw value from the range 

 


−
N

j
;

N

1j  (10) 

4. Find i-th value (particle) in CDF, which corresponds to drawn value. 

5. Remember value of i-th particle  

 i

k

j

k xx~ =  (11) 

6. Assign new particle values to the present set 

 
kk x~x =  (12) 

7. Assign new particle weights 
N
1i

kq = . 

 Condition for resampling is associated with the so-called Effective Sample Size 

(ESS), which can be understood as minimum required number of particles to 

approximate posterior PDF (particles with weights close to zero does not provide 
any useful information about PDF). ESS one can approximate by equation [2] 

 

( )∑
=

=
N

1j

2j

k

ESS

q

1
N  (13) 

 If 
ESSN  is smaller than certain adopted threshold, resampling should be done. 

Typically the threshold is taken equal to the half of the particles number 
2
N

TN = . 

 A more detailed description of PF can be found in [8, 11], whereas another 

resampling methods can be found in [5, 12]. 
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3. AUXILIARY PARTICLE FILTER 
 
 Auxiliary Particle Filter (APF), also called Auxiliary SIR (ASIR) is a variant of 

the SIR algorithm. APF was proposed by Pitt and Shephard in 1999 [14], and it 

should reduce the two main PF disadvantages – high sensitivity to outliers values 
and poor posterior approximation [3]. 

 The algorithm assumes adding an auxiliary variable – index, which is draw as 

particles in resamping, but it has an effect on the particle choice at time update. 
 APF principle of operation is shown in Algorithm 4. 

 

Algorithm 4 
 

1. Draw N  particles from initial PDF ( )0

i

0 xp~x ; set initial weights 
N
1i

0q =  and 

initial time step 1k = . 

2. Compute value [ ]i

1kk

i

k xxE −=µ  and weight 

 ( ) i

1k

i

kk

i

*k qypq~ −µ∝  (14) 

where i

kµ  is a certain value dependent on i

1kx − , characterizing present state value i

kx  

(in algorithm assume that it is expected value, but it can be also value drawn from 

transition model ( )i

1kk

i

k xxp~ −µ ). 

3. Normalize weights assuming ( ) 1q
j

*k

N

1j =∑ =
. 

4. Draw auxiliary indexes ia  for N,...,1i = . Index ba i =  means that in the i-th 

drawing particle with b-th number was chosen. PDF to drawing is given by pairs 

{ }i

*k

i

1k q,x − . 

5. For N,...,1i =  draw samples, using the previously obtained auxiliary indexes 

( )i
a

1kk

i

k xxp~x −
. 

6. Compute particle weights according to expression 

 
( )
( )ia

kk

i

kki

k

yp

xyp
q~

µ
∝  (15) 

7. Normalize particle weights according to (6). 

8. Resampling. 
9. Increase the time step 1kk += , go to step 2. 

 In [1] it was found that in Algorithm 4 resampling in step 8 is unnecessary, 

since during previous steps have already occurred particles drawing, using 

information about the current measurement (this step was implemented to compare 
the original methods). 
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4. RAO-BLACKWELLISED PARTICLE FILTER 
 
 The approach proposed in Rao-Blackwellised Particle Filter (RBPF) is feasible 

only in the specific case, where at least one state variable is linearly dependent in 

all state space model equations. 

 It is assumed that state variables 
kx  can be divided into two groups – PF

kx  

(nonlinearly dependent) and KF

kx  (linearly dependent) [6]. Then system model can be 

written by equations 

 ( ) ( ) ( ) PF

1k

PF

1k

PFKF

1k

PF

1k

PFPF

1k

PFPF

k vxGxxFxfx −−−−− ++=  (16a) 

 ( ) ( ) ( ) KF

1k

PF

1k

KFKF

1k

PF

1k

KFPF

1k

KFKF

k vxGxxFxfx −−−−− ++=  (16b) 

 ( ) ( ) k

KF

k

PF

k

PF

kk nxxHxhy ++=  (16c) 

 The advantages of this algorithm is performance increase through the use of the 

Kalman Filter to certain of state variables. One can also reduce the number of 
particles, since value vector of particle has reduced dimension [10]. 

 Further analysis will be made for a particular model 

 
( ) 1k,12

1k,1

1k,2

k,1 v
1x

x
8.0x −

−

− +
+

=  (17a) 

 
1k,21k,21k,1k,2 vx7.0x4.0x −−− ++=  (17b) 

 
kk,2k,1k nxxy +−=  (17c) 

where 
1k,1v −
, 

1k,2v −
 and 

kn  are Gaussian noises with variances equal respectively 1.0 , 

3.0 , 2.0  (mean value equal to zero in each case). 

 Comparing equations (16) and (17) one can write following expressions 

 ( ) ( ) PF

k

PF

1k

KFPF

1k

PFKF

kk,2

PF

kk,1 x4.0xf,0xf,xx,xx ==== −−
 (18a) 

 ( )
( )

( ) ( ) ( ) 1xG,1xG,7.0xF,
1x

8.0
xF PF

1k

KFPF

1k

PFPF

1k

KF

2PF

1k

PF

1k

PF ===
+

= −−−

−

−
 (18b) 

 ( ) ( ) 1xH,xxh,vv,vv
PF

k

PF

k

PF

k1k,2

KF

1k1k,1

PF

1k −==== −−−−
 (18c) 

Moreover, based on variances assumed 

 2.0R,3.0Q,1.0Q KFPF ===  (19) 

 One can see that due to low dimension of the system (17), all matrices become 

scalars. 

 Algorithm 5 describes RBPF principle of operation for system (17) 

Algorithm 5 

1. Initialization. For N,...,1i =  draw particles from initial PDF ( )PF

0

)i(PF

0 xp~x  and set 

values { } { }0

KF

0

)i(

0|0

)i(KF

0|0 P,xP,x = . Set time step 1k = . 

2. PF time update. For N,...,1i =  draw particles from transition model 

( ))i(KF

1k|1k

)i(PF

1k

PF

k

)i(PF

*k x,xxp~x −−−
. 
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3. KF time update. For N,...,1i =  calculate 

 
( )( ) 














+
−++=

−

−−
−−−−−

1x

x8.0
xLx4.0x7.0x

2iPF

1k

)i(KF

1k|1k)i(PF

*k

)i(

1k

)i(PF

1k

)i(KF

1k|1k

)i(KF

1k|k
 (20) 

 ( )T)i(

1k

)i(

1k

)i(

1k

)i(

1k|1k

2)i(

1k|k LNL3.0P7.0P −−−−−− −+=  (21) 

where 

 
( )( )( )

1.0

1x

P8.0
N

22iPF

1k

)i(

1k|1k

2

)i(

1k +
+

=

−

−−
−

 (22) 

 ( ) 1)i(

1k

)i(

1k|1k

2)i(

1k NP7.0L
−

−−−− =  (23) 

4. PF measurement update. For N,...,1i =  calculate particles weights  

 ( ))i(KF

1k|k

)i(PF

*kk

)i(

k x,xypq~ −∝  (24) 

For N,...,1i =  normalize particle weights according to (6). 

5. Resampling. Draw N samples )i(PF

kx , assuming that probability to draw value 
)j(PF

*kx  is given by  

 ( ) )j(

k

)j(PF

*k

)i(PF

k qxxPr ==  (25) 

6. KF measurement update. For N,...,1i =  calculate 

 ( ))i(KF

1k|k

)i(PF

kk

)i(

k

)i(KF

1k|k

)i(KF

k|k xxyKxx −− +−+=  (26) 

 ( )T)i(

k

)i(

k

)i(

k

)i(

1k|k

)i(

k|k KMKPP −= −
 (27) 

where 

 2.0PM
)i(

1k|k

)i(

k += −
 (28) 

 ( ) 1)i(

k

)i(

1k|k

)i(

k MPK
−

−−=  (29) 

7. Increase time step 1kk += ; go to step 2. 

 It should be noted that in this case the i-th particle is composed of )i(PF

kx , )i(

kq , 
)i(KF

k|kx  and )i(

k|kP . 

 

5. SIMULATION RESULTS 
 
 System (17) was used in all simulations. In each case simulation length was 

1000M =  steps. The sequence of state variables and measurements was identical for all 

cases. 4 algorithms Were compared – BF, RBPF, APF and SIR. In the SIR algorithm 

assumed that importance density was unconditional Gaussian function ( )5.1,0N  and that 

the resampling was performed at each algorithm iteration. Hence expression (5) was 
simplified to the form 



Piotr Kozierski, Marcin Lis 

 

 

86 

 
( ) ( )

( )i

k

i

1k

i

k

i

kki

k
xg

xxpxyp
q~

−
∝  (30) 

 It should be noted that state variable i

kx  for system (17) is a two-element vector 

[ ]Ti

k,2

i

k,1

i

k xxx = , and hence probabilities in (30) are given by product of the two 

probability values 

 ( ) ( ) ( )i

1k

i

k,2

i

1k

i

k,1

i

1k

i

k xxpxxpxxp −−− =  (31) 

 ( ) ( ) ( )i

k,2

i

k,1

i

k xgxgxg =  (32) 

 Simulation results are shown in Table 1. The results includes Mean Square Error 

(MSE) for both state variables and computation time. 
 

Table 1. Comparing performance tracking of BF, RBPF, APF and SIR – simulation results 

 

 N = 100 N = 200 N = 500 

BF 

MSE1 = 0.1980 

MSE2 = 0.2889 

t = 0.40s 

MSE1 = 0.1938 

MSE2 = 0.2817 

t = 0.74s 

MSE1 = 0.1897 

MSE2 = 0.2758 

t = 1.70s 

APF 

MSE1 = 0.3515 

MSE2 = 0.4921 

t = 0.70s 

MSE1 = 0.3595 

MSE2 = 0.4904 

t = 1.32s 

MSE1 = 0.3471 

MSE2 = 0.4722 

t = 3.13s 

RBPF 

MSE1 = 0.1962 

MSE2 = 0.2815 

t = 3.81s 

MSE1 = 0.1957 

MSE2 = 0.2818 

t = 7.56s 

MSE1 = 0.1954 

MSE2 = 0.2821 

t = 19.53s 

SIR 

MSE1 = 0.5600 

MSE2 = 0.7145 

t = 0.52s 

MSE1 = 0.5468 

MSE2 = 0.5410 

t = 0.99s 

MSE1 = 0.5552 

MSE2 = 0.4403 

t = 2.30s 

 

6. CONCLUSIONS 
 

 Comparing the results from Table 1 one can see that the best tracking of hidden 
variables and the shortest calculations time occurs for simple BF algorithm. 

Tracking performance for RBPF is close to BF, but computation time is about 10-

fold greater. Therefore one can conclude that RBPF is useful only when number of 
linearly dependent state variables is greater.  

 Auxiliary Particle Filter for proposed system has a very poor performance, 

whereas SIR with independent importance density has the worst tracking 

performance – it is shown that algorithm with such function can work, but it is far 
from expectations. 

 It is shown that choice of PF algorithm should be taken into account a system 

model, because instead of improve the results, it can be worse. 
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 Future research will be focused on the APF and its poor tracking performance, 

to get better results. Likewise some attempts will be made to system classification 
in respect of PF algorithms – the best of PFs for different system models. 

 

REFERENCES 
 
[1] Arulampalam S., Maskell S., Gordon N., Clapp T., A Tutorial on Particle Filters for 

On-line Non-linear/Non-Gaussian Bayesian Tracking, IEEE Proceedings on Signal 

Processing, Vol.50, No.2, 2002, pp.174-188. 

[2] Brzozowska-Rup K., Dawidowicz A.L., Metoda filtru cząsteczkowego, Matematyka 

Stosowana: matematyka dla społeczeństwa 2009, T. 10/51, pp.69-107. 

[3] Candy J.V., Bayesian signal processing, WILEY, New Jersey 2009, pp.19-44,  

237-298. 
[4] Chang C., Ansari R., Khokhar A., Multiple Object Tracking with Kernel Particle 

Filter, IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, June 2005, Vol. 1, pp.566-573. 

[5] Douc R., Cappe O., Moulines E., Comparison of Resampling Schemes for Particle 

Filtering, Proceedings of the 4th International Symposium on Image and Signal 

Processing and Analysis, September 2005, pp.64-69. 

[6] Doucet A., Freitas N., Murphy K., Russell S., Rao-Blackwellised particle filtering 

for dynamic Bayesian networks, Proceedings of the Sixteenth conference on 

Uncertainty in artificial intelligence, pp.176-183. 

[7] Doucet A., Godsill S., Andrieu C., On sequential Monte Carlo sampling methods for 

Bayesian filtering, Statistics and Computing, 10, 2000, pp.197-208. 

[8] Doucet A., Johansen A.M., A Tutorial on Particle Filtering and Smoothing: Fifteen 
years later, handbook of Nonlinear Filtering 2009/12, pp.656-704. 

[9] Gordon N.J., Salmond N.J., Smith A.F.M., Novel approach to nonlinear/non-

Gaussian Bayesian state estimation, IEE Proceedings-F, Vol.140, No.2, 1993, 

pp.107-113. 

[10] Handeby G., Karlsson R., Gustafsson F., The Rao-Blackwellized Particle Filter: A 

Filter Bank Implementation, EURASIP Journal on Advances in Signal Processing, 

Volume 2010, Article ID 724087, pp.10. 

[11] Kozierski P., Lis M., Filtr cząsteczkowy w problemie śledzenia – wprowadzenie, 

Studia z Automatyki i Informatyki, Tom 37, 2012, pp.79-94. 

[12] Liu J.S., Chen R., Sequential Monte Carlo Methods for Dynamic Systems, Journal 

of the American Statistical Association, September 1998, Vol. 93, No. 443, pp.1032-
1044. 

[13] Mountney J., Obeid I., Silage D., Modular Particle Filtering FPGA Hardware 

Architecture for Brain Machine Interfaces, Conf Proc IEEE Eng Med Biol Soc. 

2011, pp.4617-4620. 

[14] Pitt M., Shephard N., Filtering via simulation: auxiliary particle filters, Journal of 

the American Statistical association, Vol.94, No.446, pp.590-599. 

[15] Schön T.B., Wills A., Ninness B., System identification of nonlinear state-space 

models, Automatica 47 (2011), pp.39-49. 



Piotr Kozierski, Marcin Lis 

 

 

88 

[16] Sutharsan S., Kirubarajan T., Lang T., McDonald M., An Optimization-Based 

Parallel Particle Filter for Multitarget Tracking, IEEE Transactions on Aerospace 

and Electronic Systems, Vol.48, No.2, 4/2012, pp.1601-1618. 

[17] Thrun S., Particle Filters in Robotics, Proceedings of the 17th Annual Conference on 

Uncertainty in AI (UAI), 2002. 

[18] Woo J., Kim Y-J., Lee J., Lim M-T., Localization of Mobile Robot using Particle 

Filter, SICE-ICASE International Joint Conference 2006, pp. 3031-3034. 

 

 


