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Boundary (and initial) conditions choice for the effec-
tive generation and propagation of nonlinear sound in a
stratified medium is studied. The adjustment to a medium
type is introduced via a choice of equations of state.
Liquid, liquid with bubbles and gas cases are consider~d.
Model propagation equations are derived for the special
cases of pIane di~ected waves. The application of the con-
ditions in two-dimensional version (three-dimensional with
the cylindrlc symmetry) is discussed and some test calcul-
ations of solutions are performed numerically. A good sha-
pe and direction conservation in a weak nonlinear condi-
tions is discovered for a triangular initial wave from low
frequency range.

ABSTRACT

1.INTRODUCTION
The problem .under considera-

tion is rather complicated in
general therefore we begin to
deal with one-dimensional mo d-
eIs. We construct models that
may be applied to liquid, gas,
liquid-bubbles and gas-drops
mixtures. We wish to investig-
ate how the choice of initial
(boundary) conditions influen-
ce the effectivity of the pro-
cess of energy transfer from a
source to the hydrodynamical
waves. We interes t especially
directed waves and mean field

(e.g.streaming) genera t i on (1].
It should be mentioned as
well that the problem is also
connected with the general
hydrodynamical problems which
obtained the name of meteorol-
ogical field adaptation [2]
and dispersion relation branc-
hes division of the arbitrary
disturbance [1]. We study such
division in the week nonlinear
evolution regime of the compo-
site taking into account the
self- action and interaction
effects. Such problem arises
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and effectively solved for the
surface waves beginning from
the works of Korteweg and de
Vries (3) for the long wave ra
nge. In this range the disper-
sion operator may be approxim-
ated by the pure derivatives
and the initial problem for a
directed waves appears to be
integrable that now serves
like a classical example of
the such mechanical system
with many conservations laws,
solitons solutions and many
other interesting features [4].
The dispersion of nonlinear
sound in stratified medium is
different from those ones [1].
The simple nonlinear equations
in a homogenious one- dimensi-
onal medium could be integrat-
ed in some other clas sical
initial problem. The simplest
one (Hopf equation) shows the
breakdown of any wave and the
Burgers equation introduces
stabilizing dissipative effect
which give the realistic shock
wave model and many interesti-
ng features in its multidimen-
sional counterparts [S]. Even
this one- dimensional theory
crucially changes when we int-
roduce the density inhomogene-
ity of the propagation medium.
The strong dispersion appears
and the concurence of it with
nonlinearity is not studied
we 11 ye t [1,6]. Mo r eov er , the
realistic physical foundation
needs the multicomponents des-
cription and the adequate app-
ropriate choice of the thermo-
dynamical state equations.
Even in the one-dimensional
space we should introduce thr-
ee dynamical variabies (compo-
nents) and therefore three
fundamental types of disturba-
nce (dispersion equation solu-
tion). We would a1so show how
the choice of the equations of
state changes the dispersion
properties of the wave.
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2. THEORY OF DIRECTED WAVES
Here we stop ourselves on

the Euler three- component eq-
uations:
ap + a(pv)

=0
at ar
av + av 1 apv = g
at ar p ar
aE: + v ~ E av ( 1)=
at ar p ar
where r- vertical coordinate,
height over the Earth surface,
t- time, y ,p,E.v density,
p ressu r e , internal energy and
velocity of gas corresponding-
ly, g - gravity acceleration.
We adopt naw the linearized
equations for internal energy
and pressure as a function of
density and temperature. The
choice of a medium determine
the coefficients in those equ-
ations. The order of them is
strongly depend on the aggreg-
ate state of the medium. In
the most general case instead
of the third equation in syst-
em (1) and the state relation
connect ing E., p and J. we have
the next one:
A ap

at
+ B ap

at
- po

av
ar

Po being the unperturbed unde-
rground pressure. For idea1
gas we have the well-known: B
= p / (Y(ó - 1» The appro-
priate choice of A and B coef
ficients allows to consider
the more complicated multiple
flows. It may be, for example,
water with bubbles or air
with droplets [7]. In this
case an inhomogeneity is usua-
Ily accompanied by some strat-
ification.

The problem of gasdynamical
field components separation
relates to the set of adaptat-
ion and initialization proble-
ms [1] being the subject of



Geophysics [2]. As a rule, i t
is accepted to separate the
wave field to composites dist-
inguishing by dispersion rela-
tion Ck) - acoustic, internal
gravity waves, Rossby waves
(in wide variety of meterolo-
gical problems). Separation
by this way has quite elear
physieal meaning beeause of
every type determination by
eharaeteristic region of freq-
uencies and group velocities.
Nevertheless it seems very
useful to separate wave field
to composites of different
propagation direction. It all-
ows to analyze the energy and
amplitude properties distribu-
tion in a gas disturbance evo-
lution especially in the weak
nonlinear regime likely the
pioneering works of Korteveg -
de Vries and many of them till
up-to-date ones [4]. Ihe pres-
ent paper is a prolongation of
[6] in which the nonlinear
evolution of one- dimensional,
exponentially stratified atmo-
sphere initial disturbancies,
caused up- or down- directed
wave were investigated. In
one - dimensional atmosphere
model only acoustical waves
propagate. Ihe system of gas-
dynami cal equations for one-
dimensional gas movement is
(1). Ihe main steps for diree-
ted wave equations derivation
are following [1,6]. First of
alI from the linearized system
(1) one can obtain the twin
conneetion equations for the
disturbancies of gasdynamieal
variabies in ( ,k) - represen-
tation:
v '=p 'iw I(p (1/2h +ik -a»;o o 00

p' =p '(g( 1/2h + ik -a) _w2)1
o o 2

( 1/2h + ik - a)
Ihe disturbed values per,t),

v(r,t) by the following way
are connected with the introd-
uced Vo 'Po' .fo:

pCr,t) =A' (k)exp(-r/2h + r)*
*exp(i( t-kr». the same for
p(r,t) v(r,t) =vo I (k)*
exp(r/2h -o(r) *exp(i( t+k r j ) :

where wand kare eonnected
by the dispersion relation:

w2= k2~2 + W2; ~2

(gh B)/A W2 {B(1/2h
a)2+ gh(1/4h2- a2) A(a -

1/2h)g }/A; f;J.. and tf'z being
the positive numbers. We cons-
ider an exponentially density
stratified..Po ="poD *exp(- r/h)
undisturbed medium, h - scale
he ight , a = Cp/Cv- s p e c i f i c
heats ratio. In the case of
ideal gas we have a eonstant
internal energy density Co =
gh/ (t - 1) . I n th is case the
ba s ic eoefficients a re : 01..= O;
A = 1/(1 - 1); B = -ghl(1-1);
~2 = 19h ; W2 = 19h 1 4h2
and the main formulas obvious-
ly have the more simplier form
[6]. By the seeond step it is
possible to obtain the eonnec-
tion equations in (r,t) - pre-
sentation by uniting of (k,t)
eompounds in Fourier integrals
corresponding to different
signes of and k for up- dir-
ected wave, to the same signes
for down-direeted wave and to

= O for the stationary cont-
ribution.

Ihus, the wave field in any
time moment is separated to
the three independent compoun-
ds by the simple way. Ihe full
wave field separation sueh as
proposed one:to directed and
stationary parts or by the
type of dispersion relations
is based on Fourier - deeompo-
sition of wave field in any
evolution moment. It is true
only in the ease of weak dist-
urbaneies described by the
linearized gasdynamical syste-
m. Ihus, the exact classifica-
tion of wave field composites
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is possible only in this case.
For the clearest explanation
let's take the example of wave
motions in ideal ga s , As one
could see, the main formulae
for liquid differ only by the
coefficients A and B.

We have derived an importa-
nt conclusion: the directed
wave keeps it properties even
for essentially large amplitu-
de initial conditions disturb-
ancies - disturbance of veloc-
ity up to 150m/sec. The initi-
al conditions are constructed
by the linear theory connect-
ions. numerical calculation
being realized by means of
nonlinear Lagrange finite-
differencies scheme. Thus,
very actual are the following
more general aspects of such
initialization problem, up to
our opinion: a) to separate
components moving in different
directions and stationary one
in any evolution moment; b) to
develop an analytical descrip-
tion of their further evoluti-
on and to calculate as comple-
te as possible the wave form
distortion up to nonlinear
effects (not only up to dispe-
rsion properties). It means
to construct nonlinear evolut-
ion equations for the directed
waves; c) to investigate a
movement in nonisothermic cas-
e; d) to generalize the resul-
ts to the cases of two- and
three-dimensional problem.
3. THE NONLINEAR THEORY

DEVELOPMENT
Let's solve the a) and b)

problems. Problem c) was cons-
idered in [6]. About problem
d): it was verified by numeri-
cal calculation that wave rem-
ains quite directed along the
axis of cylindrical symmetry
disturbance with the radius 3
km [6]. But generally the pro-
blem requires further direct
development [1] .The developme-
n t of method [8] is general
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tecnique of wave motion proje
ction in any evolution moment
to the three directed parts:

(

V '(r,t)exp( -r/2h)]
p 'Cr,t)exp( r/2h) =
p '(r,t)exp( r/2h) ..

(
::] + [ : =] + [pa t, a t e~p(r/2hl]
p p p exp(r/2h)+ - stat

There designed v+(r,t)~
V r,t)upexp(-r/2h); p+-= Pup *
exp(rj2h) and 50 on, i.e.
essentially directed parts of
wave mo t ion , p stat being the
stationary part of wave moti-
on. In the case of the linear-
ized system of equations the
projection operators are obta-
ined in explicit form:

(

1/2 11 12
P+= L1/2 L1*11 L1*12

L2/2 L2*11 L2*12
J; (2 l

and so on for P_ and PStat. [6].

Integrodifferential operators
- matrix elements are determi-
ned by formulas:
L1 = - Poo [-ala +1/2h ]

1(Tign- t:

eo

L2 =

*_ldrłFCr-rł)
co

_Jdr- [1gh*aIBr,+

g ( 1: l'/ 2 )] F (r- r ł )

~ fdrłF(r-rł)*
21(p }'gh -~

[-a/ar' +1/2h]

11=

12=-



where F(r)=2 (I (r/2h)o
Lo(r/2h» (] lo modified
Bessel function of zero order,
L -Struve function. The base

o

of calculation is the connect-
ion equations for each pair
from v,p,p of every component
[6]. The obtained operators
(2) have ordinary properties
of projection operators: P+ +
p + P ~'ł:a t. = 1 ; P+ * p_=
P+*Pstat= O; P+*P+ =P+,

To obtain in any moment up~
directed field, for example,
it is s ufficient to apply P+
to the total field by the
ordinary way.

The possibilities of the
method are described in [6,8].
There are: the calculation of
the wave energy parts for eve-
ry component possesses at any
time, choice of initial condi-
tions for the preferential
generation of the needed type
component . Let's consider the
expansion of linear problem
projection operators, pointed
out in b). Evolutionary equat-
ion for v derived for the

theself-interaction case has
form:
a v

dr 'p (r-r' )*a t

[a2Iar,2-1/4h2Jv_(r',t)= (3)
-1/2v_(alar+1/2h)v_8xp(r/2h)+

8xp(r/2h)(alar-1/2h)I (r,t)*o
(lhalar+(1-1/2»(alar-1/2h)*
I (r,t) +

1/C2n21h)_ldr,pcr-r')8xp(r'/2h)

.{a2V_lar.2[-C12-2)halar'-1-1+

12/2] +av_Iar'(12-1-2)[-h*
a2lar,2 + alart - 1/4h]+

v_[lha2Iar,2+(12/2-1)alar'+

(1-1)(1-r/2l/2h]alar'}Io<r:tl;
where ro

Io(r,t)= l drtP(r-r')v_(r',t)

The difficulties of this
equation analytical investiga-
tion are apparent. Therefore
the evolutionary equations
have been investigated numeri-
ca lLy , For ca lcu la t ion s j+e l i ą ,

h =6.8 km, g = 9.8 m/sec have
been accepted. As initial dis-
turbance of velocity the loca-
lized function was choosen:
v*exp(-r/2h)=

Jt h-4v (r-lOh- i)/h;10h{r~10h+h/4
4v·(r-l0h+ ~)/h;10h-h/4~r'10h

v~= 1 m/s that has the maxim-
um of v= 150 m/s at the height
r = 10h. This initial cond-
ition has width of h/2 and its
evolution cannot be described
neither short- nor long-wave
approach. Calculations were
made for alI three nonlinear
improvements from (3) and in
the case of each one separate-
ly (see fig.). It was revealed
the preferential role of the
first nonlinear addenda which
has the most simple form. At
the figure the initial distur-
bance and its evolution are
shown at the t = 41 sec from
the beginning of disturbance
in linearized case ( curve 1 -
the distortion caused only by
dispersion properties of the
atmosphere) and in general
case of alI nonlinear improve-
ments (curve 2) taken into
account. One can clearly see
the joint influence to the
wave form of nonlinear and
dispersion effects : the back
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tr- exp( - "%h ). m/s

1 t=Os

o

f.=lfłs

7 ID

front became more steep. Disp
ersion effects are connected
with inhomogeneity of the bac-
kground atmosphere (exponenti-
ally stratified), nonlinear
with the usage of nonlinear
equations of gas dynamies.
Moreover, nonlinear distortio-
ns of up- and down- directed
waves have the same character
- the right-hand side additio-
ns are the same signes for
directed waves ( up to numeri-
cal calculations). In general,
method has a practical applic-
ation. For large- scale distu-
rbancies it is possible: 1) to
separate gasdynamical field
disturbancies in any moment to
three composites: up-, down-
propagated and stationary one.
This fact permits to estimate
simply the part of wave energy
wich possesses every composite
even in case of strong initial
disturbancies. (The most inte-
resting are height sources
generated composites of alI
three types) 2) to describe
further evoIution of composit-
es with account of their inte-
raction. Some other possibili-
ties arise. Evolutionary equa-
tions of such type have to
describe the propagation of
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electromagnetic waves in wave-
guides, this fact being caused
by the similarity of initiaI
systems of equations [1,9].

't/h
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